![《用频率估计概率》PPT课件2-九年级上册数学部编版第1页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646068/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《用频率估计概率》PPT课件2-九年级上册数学部编版第2页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646100/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《用频率估计概率》PPT课件2-九年级上册数学部编版第3页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646119/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《用频率估计概率》PPT课件2-九年级上册数学部编版第4页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646145/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《用频率估计概率》PPT课件2-九年级上册数学部编版第5页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646179/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《用频率估计概率》PPT课件2-九年级上册数学部编版第6页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646202/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《用频率估计概率》PPT课件2-九年级上册数学部编版第7页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646225/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![《用频率估计概率》PPT课件2-九年级上册数学部编版第8页](http://img-preview.51jiaoxi.com/2/3/14673731/0-1691740646263/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
人教版九年级上册25.1.1 随机事件多媒体教学ppt课件
展开
这是一份人教版九年级上册25.1.1 随机事件多媒体教学ppt课件,共54页。PPT课件主要包含了随机事件及其概率,由定义可知,例2填表,随堂检测,拓展提高,体验中考,随机事件的概念,课后巩固等内容,欢迎下载使用。
探究:投掷硬币时,国徽朝上的可能性有多大?
在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?这是我们下面要讨论的问题。
历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示
当抛硬币的次数很多时,出现下面的频率值是稳定的,接近于常数0.5,在它附近摆动.
我们知道,当抛掷一枚硬币时,要么出现正面,要么出现反面,它们是随机的.通过上面的试验,我们发现在大量试验中出现正面的可能为0.5,那么出现反面的可能为多少呢?
这就是为什么我们在抛一次硬币时,说出现正面的可能为0.5,出现反面的可能为0.5.
出现反面的可能也为0.5
随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.出现的频率值接近于常数.
某批乒乓球产品质量检查结果表:
当抽查的球数很多时,抽到优等品的频率 接近于常数0.95,在它附近摆动。
某种油菜籽在相同条件下的发芽试验结果表:
当试验的油菜籽的粒数很多时,油菜籽发芽的频率 接近于常数0.9,在它附近摆动。
一般地,在大量重复进行同一试验时,事件 发生的频率 (n为实验的次数,m是事件发生的频数)总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件 的概率,记做 .
(1)求一个事件的概率的基本方法是通过大量的重复试验;
(3)概率是频率的稳定值,而频率是概率的近似值;
(4)概率反映了随机事件发生的可能性的大小;
(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率;
可以看到事件发生的可能性越大概率就越接近1;反之, 事件发生的可能性越小概率就越接近0
例1:对一批衬衫进行抽查,结果如下表:
求抽取一件衬衫是优等品的概率约是多少?抽取衬衫2000件,约有优质品几件?
某射手进行射击,结果如下表所示:
(1)这个射手射击一次,击中靶心的概率是多少?
(2)这射手射击1600次,击中靶心的次数是 。
某林业部门要考查某种幼树在一定条件下的移植成活率,应应采用什么具体做法?
观察在各次试验中得到的幼树成活的频率,谈谈你的看法.
是实际问题中的一种概率,可理解为成活的概率.
人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.
由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.
由下表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为_____.
1.林业部门种植了该幼树1000棵,估计能成活_______棵.
2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_______棵.
某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
利用你得到的结论解答下列问题:
从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
因此,出售柑橘时每千克大约定价为2.8元可获利润5 000元.
根据估计的概率可以知道,在10 000千克柑橘中完好柑橘的质量为 10 000×0.9=9 000千克,完好柑橘的实际成本为
根据频率稳定性定理,在要求精确度不是很高的情况下,不妨用表中试验次数最多一次的频率近似地作为事件发生概率的估计值.
为简单起见,我们能否直接把表中500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的频率看作柑橘损坏的概率?
因为500千克柑橘损坏51.54千克,损坏率是0.103,可以近似的估算是柑橘的损坏概率
某农科所在相同条件下做了某作物种子发芽率的实验,结果如下表所示:
一般地,1 000千克种子中大约有多少是不能发芽的?
解答:这批种子的发芽的频率稳定在0.9即种子发芽的概率为90%,不发芽的概率为0.1,机不发芽率为10%
所以: 1000×10%=100千克
1000千克种子大约有100千克是不能发芽的.
上面两个问题,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等, 事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.
当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.
1.某种油菜籽在相同条件下的发芽试验结果表:
当试验的油菜籽的粒数很多时,油菜籽发芽的频率 接近于常数0.9,于是我们说它的概率是0.9。
2. 对某电视机厂生产的电视机进行抽样检测的数据如下:
(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?
5.如图,小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回。(1)若小明恰好抽到了黑桃4。①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率。(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,则小明负。你认为这个游戏是否公平?说明你的理由。
姚明在最近几场比赛中罚球投篮的结果如下:
⑴计算表中进球的频率;
⑵思考:姚明罚球一次,进球的概率有多大?
⑶计算:姚明在接下来的比赛中如果将要罚球15次,试估计他能进多少个球?
⑷设想:如果你是火箭队的主教练,你该如何利用姚明在罚球上的技术特点呢?
一批西装质量抽检情况如下:
(1)填写表格中次品的频率.
(2)从这批西装中任选一套是次品的概率是多少?
(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?
2.必然事件的概率为_____,不可能事件的概率为______,不确定事件的概率范围是______.
1.任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的点数 可能,有哪些可能 .
2.表中是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.
(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次时,得到______次反面,反面出现的频率是______.
(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______.那么,也就是说机器人抛掷完9999次时,得到_______次反面,反面出现的频率是________.
3.给出以下结论,错误的有( )①如果一件事发生的机会只有十万分之一,那么它就不可能发生. ②如果一件事发生的机会达到99.5%,那么它就必然发生. ③如果一件事不是不可能发生的,那么它就必然发生. ④如果一件事不是必然发生的,那么它就不可能发生.A.1个 B.2个 C.3个D.4个
6.一位保险推销员对人们说:“人有可能得病,也有可能不得病,因此,得病与不得病的概率各占50%”他的说法( )A.正确B.不正确C.有时正确,有时不正确D.应由气候等条件确定
7.某位同学一次掷出三个骰子三个全是“6”的事件是( )A.不可能事件B.必然事件C.不确定事件可能性较大D.不确定事件可能性较小
例:掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为偶数;(2)点数大于2且小于5.
分析:从大量的等可能事件的结果中求任一事件发生的概率是计算概率的基本题型之一,解决这类问题的关键是确定所有可能的结果数和事件发生的结果数,然后用后者比前者.
解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.
(1)点数为偶数有3种可能,即点数为2,4,6.∴P(点数为偶数)= = ;
(2)点数大于2且小于5有2种可能,即点数为3,4.∴P(点数大于2且小于5)= = .
1.王刚的身高将来会长到4米,这个事件发生的概率为_____.
2.盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是__________.
3.某班的联欢会上,设有一个摇奖节目,奖品为圆珠笔、软皮本和水果,标在一个转盘的相应区域上(转盘被均匀等分为四个区域,如图).转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得圆珠笔和水果的概率分别为__________
1.在英语句子“Wish yu success!”(祝你成功!)中任选一个字母,这个字母为“s”的概率是________.2.下列事件发生的概率为0的是( )A、随意掷一枚均匀的硬币两次,至少有一次反面朝上B、今年冬天黑龙江会下雪C、随意掷两个均匀的骰子,朝上面的点数之和为1D、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域.
3.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。若某人购物满100元,那么他中一等奖的概率是( )A. B. C. D.
4.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,求摸到白球的概率为多少?5.一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是 .(1)取出白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?(提示:利用概率的计算公式用方程进行计算.)
1.有一个正方体,6个面上分别标有1--6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )A. B. C. D.
2.从分别写有数字-4、-3、-2、-1、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( )A. B. C. D.
3.有20张背面完全一样的卡片,其中8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北海海景;把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是( )A. B. C. D.
4.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页,数学2页,英语6页,他随机的从讲义里夹中抽出1页,抽出的试卷恰好是数学试卷的概率是( ) A B C D
5.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球,这些球除了颜色外没有其它的区别。搅匀两箱中得球,从箱中分别任意摸出一个球,正确的说法是( ) A.从甲箱摸到黑球的概率大 B.从乙箱摸到黑球的概率大 C. 从甲乙两箱摸到黑球的概率相等 D.无法比较从甲乙两箱摸到黑球的概率
6.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图中的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜得价格。若商品的价格是360元,那么他一次就能猜中的概率是多少?
例:如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.(3)指针不指向绿色的概率
分析:问题中可能出现的结果有8个,即指针可能指向7个扇形中得任何一个。由于这是8个相同的扇形,转动的转盘又是自由停止的,所以指针指向每个扇形可能性相等。
解:按颜色把8个扇形分为红1、红2、绿1、绿2、绿3、黄1、黄2、黄3,所有可能结果的总数为8.
(1)指针指向红色的结果有2个,即红1、红2,因此 P(指向红色)= =
(2)指针指向黄色或绿色的结果有3+3=6个,即绿1、绿2、绿3、黄1、黄2、黄3,因此 P(指针指向黄色或绿色)= =
甲、乙 两人做如下的游戏:
你认为这个游戏 对甲、乙双方公平吗?
任意掷出骰子后,若朝上的数字是6,则甲获胜;
若朝上的数字不是6,则乙获胜。
2.随机事件的概率的定义
在一定条件下可能发生也可能不发生的事件,叫做随机事件.
练习1.抛掷一只纸杯的重复试验的结果如下表:
(1) 在表内的空格初填上适当的数
(2)任意抛掷一只纸杯,杯口朝上的概率为 .
2.明天下雨的概率为95%,那么下列说法错误的是( )
(A) 明天下雨的可能性较大
(B) 明天不下雨的可能性较小
(C) 明天有可能性是晴天
(D) 明天不可能性是晴天
3.有一种麦种,播种一粒种子,发芽的概率是98%,成秧的概率为85%.若要得到10 000株麦苗,则需要 粒麦种.(精确到1粒)
4.对某服装厂的成品西装进行抽查,结果如下表:
(2)任抽一件是次品的概率是多少?
(3)如果销售1 500件西服,那么需要准备多少件正品西装供买到次品西装的顾客调换?
1.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A. B. C. D.
2.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( ) A.0 B. C. D.1
3.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A. B. C. D. 1
4.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A. B. C. D.
5.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( )A.0 B. C. D.1
6.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( )A.1 B. C. D.0
7.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p1,摸到红球的概率是p2,则( )A. B. C. D.
8.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是( )A. B. C. D.
9.如图,每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______.
10. 随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,求这个骰子向上的一面点数是奇数的概率.
11.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是多少?
相关课件
这是一份初中数学人教版九年级上册25.1.1 随机事件教案配套ppt课件,共21页。PPT课件主要包含了课堂讲解,课时流程,问题情境,知识点,事件的认识,必然发生,必然不会发生,形状大小相同的签,一定是,不可能等内容,欢迎下载使用。
这是一份初中数学第二十五章 概率初步25.1 随机事件与概率25.1.1 随机事件精品课件ppt,共1页。
这是一份人教版九年级上册25.1.1 随机事件备课课件ppt,共9页。PPT课件主要包含了课标要求,知识梳理等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)