所属成套资源:人教版八年级数学上册单元检测+期末卷(含答案)
- 人教版八年级数学上册单元检测 第十一章 试卷 1 次下载
- 人教版八年级数学上册单元检测 第十二章 试卷 1 次下载
- 人教版八年级数学上册单元检测 第十三章 试卷 1 次下载
- 人教版八年级数学上册单元检测 第十四章 试卷 1 次下载
- 人教版八年级数学上册 期末检测卷 试卷 2 次下载
人教版八年级数学上册单元检测 第十五章
展开
这是一份人教版八年级数学上册单元检测 第十五章,共8页。
第十五章一、选择题(每题3分,共30分)1.下列各式不是分式的是( )A. B. C. D.2.【母题:教材P128例1(2)】要使分式有意义,则x的取值范围是( )A.x>1 B.x≠1 C.x=1 D.x≠03.【2023·长沙开福区月考】若分式 的值是零,则x的值为( )A.2 B.5 C.-2 D.-54.若a≠b,则下列分式化简正确的是( )A.= B.= C.= D.=5.已知a=2-2,b=(-1)0,c=(-1)3,则a,b,c的大小关系是( )A.a>b>c B.b>a>c C.c>a>b D.b>c>a6.2022年11月29日,搭载神舟十五号载人飞船的长征二号F遥十五运载火箭在酒泉卫星发射中心发射成功,中国对浩瀚星空的探索又迈入了一个全新的征程,北斗卫星导航系统提供定位和授时任务,其中授时精度为10纳秒,即:0.000 000 01秒.将0.000 000 01用科学记数法表示为( )A.1×108 B.1×109 C.1×10-8 D.1×10-97.【2023·泉州第五中学月考】已知1<x<2,则式子-+化简的结果是( )A.-1 B.1 C.2 D.38.【2022·襄阳】《九章算术》中有一道关于驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为( )A.=2× B.=2× C.=2× D.=2×9.【新考法】对于非零实数a,b,规定:a*b=-.若(2x-1)*2=2,则x的值为( )A.-2 B. C.- D.不存在10.若关于x的一元一次不等式组的解集为x≤a,且关于y的分式方程+=1有正整数解,则所有满足条件的整数a 值之积是( )A.7 B.-14 C.28 D.-56二、填空题(每题3分,共24分)11.当x的取值范围为________时,分式的值为正.12.【母题:教材P136例2】计算:÷=________.13.已知分式,当x=2时,分式的值为0;当x=3时,分式无意义,则ab=________.14.【2022·内江】对于非零实数a,b,规定a⊕b=-,若(2x-1)⊕2=1,则x的值为________.15.若+=2,则分式的值为________.16.【2023·宜昌夷陵区模拟】若关于x的分式方程=+2的解为正数,则m的取值范围是________.17.【2022·菏泽】若a2-2a-15=0,则·的值是________.18.引导学生进一步坚定理想信念,传承红色基因,某校在清明节期间组织团员和学生干部步行前往距学校13.2千米的烈士陵园进行清明祭英烈活动,已知返回学校的平均速度是前往陵园的平均速度的1.1倍,且返回学校所用的时间比去时少18分钟,如果设前往陵园时的平均速度为x千米/小时,根据题意可列方程为____________.三、解答题(19题16分,20题10分,21,24题每题12分,22,23题每题8分,共66分)19.【母题:教材P158复习题T2】计算:(1)|-3|+22-(-1)0; (2)÷; (3)-x-2; (4)·÷. 20.【母题:教材P158复习题T4】解分式方程:(1)=; (2)-=1. 21.先化简,再求值:÷,其中a满足a2+2a-3=0. 22.已知=+,求A,B,C的值. 23.若整数a使关于x的不等式组有且只有45个整数解,且使关于y的方程+=1的解为非正数,求整数a的值. 24.【2022·衢州】金师傅近期准备换车,看中了价格相同的两款国产车. 燃油车油箱容积:40升油价:9元/升续航里程:a千米每千米行驶费用:元新能源车电池电量:60千瓦时电价:0.6元/千瓦时续航里程:a千米每千米行驶费用:________元(1)用含a的式子表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其他费用分别为4 800元和7 500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低(年费用=年行驶费用+年其他费用)?
答案一、1.C 2.B 3.D 4.D5.B 【点拨】因为a=2-2==,b=(-1)0=1,c=(-1)3=-1,而1>>-1,所以b>a>c.6.C 7.A 8.B 9.C10.A 【点拨】将一元一次不等式组整理得到∵不等式组的解集为x≤a,∴a≤7.分式方程去分母,得y-a+3y-4=y-2,移项并合并同类项,得3y=a+2,解得y=.∵y有正整数解且y≠2,∴a=1或7,∴所有满足条件的整数a值之积为1×7=7.二、11.x>-且x≠0 12. 13. 14.15.-416.m<-2且m≠-3 【点拨】方程两边同时乘以(x-1)得3x=-m+2 (x-1) ,解得x=-m-2,∵x为正数,∴-m-2>0,解得m<-2.∵x≠1,∴-m-2≠1,即m≠-3.∴m的取值范围是m<-2且m≠-3.17.1518.-=三、19.【解】(1)原式=3+4-1=6;(2)原式=·(x-2)=; (3)原式=-==;(4)原式=·÷=·=.20.【解】(1)方程两边乘x(x+2),得2(x+2)=3x,解得x=4.检验:当x=4时,x(x+2)≠0,∴原分式方程的解为x=4.(2)方程两边乘(x+2)(x-2),得x(x+2)-1=(x+2)(x-2),整理,得2x=-3,解得x=-.检验:当x=-时,(x+2)(x-2)≠0,∴x=-是原分式方程的解.21.【解】原式=÷=·=·=2a(a+2)=2(a2+2a).∵a2+2a-3=0,∴a2+2a=3.∴原式=2×3=6.22.【解】+===.∴解得即A,B,C的值分别为,-,.23.【解】解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴-20≤<-19,解得-61≤a<-58,解关于y的方程得y=-a-61,∵关于y的方程+=1的解为y=-a-61,y≤0,∴-a-61≤0,解得a≥-61.∵y+1≠0,∴y≠-1,∴a≠-60.故整数a的值为-61或-59.24.【解】(1)由表格可得,新能源车的每千米行驶费用为=(元),即新能源车的每千米行驶费用为元;(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,∴-=0.54,解得a=600,经检验,a=600是原分式方程的解,∴=0.6(元),=0.06(元),答:燃油车的每千米行驶费用为0.6元,新能源车的每千米行驶费用为0.06元;②设每年行驶里程为x km,由题意,得0.6x+4 800>0.06x+7 500,解得x>5 000.答:当每年行驶里程大于5 000 km时,买新能源车的年费用更低.