小学8 数学广角——数与形精品综合训练题
展开
数学人教版
数学人教版6年级上册
第8单元精准教学★★★★★题库
一、选择题
1.观察下列点阵图并找出规律,下一个点阵图中点的个数为( ).
A.16点 B.18点 C.20点
2.一列分数的前4个是 、 、 、 .根据这4个分数的规律可知,第8个分数是( )
A. B. C.
3.求2+6+10+14的和,下面算式错误的是( )
A.16×2 B.(14+2)×4 C.30+2 D.(14+2)×2
4.小涛与爷爷、奶奶、爸爸、妈妈一起进行家庭象棋比赛,每两人都要下一盘.到现在为止,爷爷下了1盘,奶奶下了3盘,妈妈下了3盘,爸爸下了4盘,那么小涛下了( )盘.
A.1 B.2 C.3
5.照这样排下去,第六个图形里会有( )个小三角形.
A.25 B.30 C.36 D.47
6.有一个从袋子中摸球的游戏,小红根据游戏规则,做出了如下图所示的树形图,则此次摸球的游戏规则是( )。
A.随机摸出一个球后放回,再随机摸出一个球。
B.随机摸出一个球后不放回,再随机摸出一个球。
C.随机摸出一个球后放回,再随机摸出三个球。
D.随机摸出一个球后不放回,再随机摸出三个球。
7.已知99×99=9801,999×999=998001,9999×9999=99980001,下一个式子是( )
A.99999×99999=999800001 B.99999×99999=9999800001
C.99999×99999=9999980001 D.99999×99999=99999980001
8.数一数,在下图中共有( )个三角形.
A.10 B.11 C.12 D.13 E.14
9.小红用计算器探索计算规律,她算出了以下3个算式的积。
7×9=63 77×99=7623 777×999=776223照此规律,第7个算式的积是( )。
A.7777777622222223 B.77777762222223 C.7777776222223 D.7777762222223
10.在100、95、90、……、15、10、5这列数中,第11个数是( ).
A.55 B.50 C.45 D.60
11.观察图中每一个大三角形中白色的三角形的排列规律,则第5个大三角形中白色的三角形有( )
A.82个 B.154 C.83个 D.121个
12.学校教学楼有四层。小青第一节课到四楼上数学课,第二节到二楼上艺术课,第三节到三楼上科学课,中午到一楼食堂吃饭。下面比较准确地描述这件事是( )图。
A. B.
C. D.
13.观察下面的图形,想一想,第8个图形有( )个黑点.
A.45 B.46 C.47 D.48
14.观察下面的点阵图形,根据圆点的变化,探究其规律,则第8个图形中圆点的个数为( )。
A.25 B.26 C.27 D.29
15.已知121=112,12321=1112,1234321=11112,…,那么12345678987654321等于( ).
A.111111111 B.111111112
C.1111111112 D.11111111112
16.根据下面几幅图的排列规律,第四幅图是( )
A. B. C. D.
17.观察下面的算式
55×99=5445
555×999=554445
5555×9999=55544445
=( )
A.
B.
C.
18.在一个平面内把18根同样长的火柴棒首尾相接,围成一个等腰三角形,最多能围成( )种不同的等腰三角形。
A.3 B.4 C.5 D.6
19.在如图的百数表中,用十字架框住五个数(如图),这五个数之和可能是( )。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
A.205 B.216 C.220 D.224
20.如图,用棋子摆方阵,那么,图要摆( )枚棋子。
A. B. C. D.
21.小马设计了一个游戏,输入一个数后电脑会自动输出一个数,如下图:
输入
1
2
3
4
5
……
输出
根据以上规律,当小马输入数字5时,输出的数字是( )。
A. B. C.
22.如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,第(6)个图形中面积为1的正方形个数为( )。
A.20个 B.27个 C.35个 D.40个
23.下图中的圆圈是逐层排列的,设y为第n层(n为正整数)圆圈的个数,则y与n之间的关系是( )。
A.y=n B.y=4n C.y=4n+4 D.y=4n-4
24.寒假的时候,同学们去莲花山滑雪场滑雪,有些同学用雪杖摆成了如图:像上面那样摆10个三角形,至少需要( )根滑雪杖。
A.21 B.20 C.9 D.30
25.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,……,以此类推,则由正边行“扩展”而来的多边形的边数为( )。
A. B. C. D.
26.++++++…的结果( )。
A.大于1 B.小于1 C.等于1
27.下面这组图形是按照一定规律排列的,照这样的规律,第8个图形有( )个黑色小方形
A.26 B.24 C.22 D.20
28.根据你发现的规律,算式1234567×8+7的得数是( )
A.9876 B.98765 C.987654 D.9876543
29.0.123412341234…,小数点后第100个数字是( )
A.1 B.2 C.3 D.4
30.一列数1,,,,,,,,,……中的第27个数是( )
A. B. C. D.
二、填空题
31.阅读材料并回答问题。
观察一个数列:1,2,4,8,16…这一列数按规律排列,我们把这个数列中的每个数叫作这个数列的“项”,第一项叫作“首项”。在这个数列中,从第二项起,每一项与它的前一项的比值都等于2。我们把这样的数列叫作等比数列,这个固定的比值2叫作这个等比数列的“公比”。
(1)已知等比数列5,10,20,40…这个等比数列的第六项是( )。
(2)已知一个等比数列的各项都是正数。第二项是6,第四项是54,这个等比数列的公比是( ),首项是( )。
32.莉莉在研究“最多能分多少块”的问题,列了如下一张表格。
……
直线条数
1
2
3
4
…
分成的块数
2
4
7
…
(1)若在一张圆形纸片上画4条直线,最多能把它分成( )块。
(2)若在一张圆形纸片上画6条直线,最多能把它分成( )块。
(3)若在一张圆形纸片上画n条直线,最多可以分成( )块。
(4)如果想分成56块,至少需要画( )条直线。
33.3×6=18
33×66=2178
333×666=221778
3333×6666=22217778
的积里有( )个2,( )个8。
34.+++++…+=( )。
35.一个面积为1的正方形,如图,第1次截去它的,剩下它的( ),第2次截去它的,剩下它的( ),第3次截去它的,剩下它的( ),第4次截去它的,剩下它的( )……第8次截后剩下( ),用式子表示第8次截后剩下的是( )。
36.如下图,按照前面四幅图的规律,写出第五幅图中的正方形里共有( )个圆,再写出第九幅图中的正方形里共有( )个圆。
37.下面是明明用小棒搭成的图形,照这样的规律搭下去,第⑦个图形中有( )根小棒,第n个图形中有( )根小棒。
38.用小棒摆图形,按照这样的规律摆下去,第4个图形用了( )根,第10个图形用了( )根,第( )个图形用了98根。
39.下面是用棋子摆成的图案,摆成的第①个图案需要7枚棋子,摆成第②个图案需要19枚棋子,摆成第③个图案需要37枚棋子,依照这样的方式摆下去,摆成的第⑥个图案需要( )枚棋子。
40.下图都是由同样大小的五角星按一定的规律组成的,其中第①个图形中一共有2个五角星,第②个图形中一共有8个五角星,第③个图形中一共有18个五角星,……,则第⑤个图形中五角星为( ) 个。
三、判断题
41.如图这样放三角形积木,如果最下层放19块积木,共需放72块积木。( )
42.。( )
43.在数列“,,,,,,…”中,第10个数是._____
44.如图:
那么第7个点阵有45个点._____
45.44×9=396,444×9=3996,由此可得44444×9=399996._____
46.一个数列为:1,2,3,1,2,3,…按这样的顺序排下去,第20个数是3._____
47.摆1个正方形需要4根小棒,往后每多摆1个正方形就增加3根小棒,按这样的规律摆10个正方形,一共需要31根小棒。( )
48.算式9×6=54,99×96=9504,999×996=995004;通过这三个算式不用计算就可以得出999999×999996=999995000004。( )
49.按1、8、27、( )、125、216的规律排,括号中的数应为64。 ( )
50.1+3+5+7+9+13=62=36。 ( )
四、解答题
51.探索规律。
(1)观察上面的图,发现:
图①空白部分小正方形的个数是22-12=2+1
图②空白部分小正方形的个数是=4+3
图③空白部分小正方形的个数是52-42=( )+( )
(2)像这样继续排列下去,你会发现一些有趣的规律,请你再写出一道算式:( )。
(3)运用规律计算。202-192+182-172+162-152+…+22-12。
52.九名同学在老师的指导下玩击鼓传花游戏,老师每敲一下,同学就将花传给顺时针方向的下一个同学,例如0号传给1号,1号传给2号,……,8号传给0号,那么,当老师敲第50下,同学们正好完成第50次传递,花传到7号同学的手上,你知道花是从几号同学手上开始传的吗?
53.将奇数1、3、5、7、9……按图中规律排列,如:数19在第3行第3列,数37排在第5行第4列,那么数2001在第几行第几列?
54.(1)哪部分表示a2-2ab+b2?请在下图中用阴影表示出来。
(2)我发现:a2-2ab+b2=( )。
55.规定:如图1中,方格里的数表示在其周围8个方格中共有多少个△。即以“1”为中心,在它的四周8个方格中只能有1个△;以“2”为中心,在它的四周8个方格中只能有2个△;以“3”为中心,在它的四周8个方格中只能有3个△;依此类推。
按上述规定,在如图2中一共可以画12个△。现在已经画好了其中的2个,请你在合适的空格中补上其余的10个。
56.有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数,四个楼层表示的三位数有:791、275、362、612。问:第二层楼表示哪个三位数?
57.观察下面点图与算式的关系,找到规律后解答问题。
(1)按点子增加的规律给第⑤个点图补画上9个点,并在( )里写出点的总数。
(2)根据上面图中点的总数的变化规律,第n个点图里一共有( )个点(用含有n的式子表示)。
58.社区公园要铺设一条人行走道,走道长80米,宽1.6米。现在用边长都是0.4米的红、黄两种正方形地砖铺设(下图是铺设的局部图示)。
(1)铺设这条人行走道一共需要多少块地砖?(不计损耗)
(2)铺设这条人行走道一共需要多少块红色地砖?(不计损耗)
59.数一数,下图分别有多少个三角形?
你发现了什么规律吗?说说看。
60.你能利用下图发现a2-b2=(a+b)×(a-b)这个公式吗?
(1)利用你所学的面积知识探索一下.
(2)利用上面的公式快速计算下面各题.
912-902 542-462
参考答案
1.C
2.C
3.B
4.C
5.C
6.C
7.B
8.D
9.B
10.B
11.D
12.B
13.C
14.D
15.C
16.A
17.C
18.B
19.C
20.C
21.C
22.B
23.B
24.A
25.B
26.B
27.C
28.D
29.D
30.B
31. 160 3 2
32.(1)11
(2)22
(3)
(4)10
33. 2021 1
34.
35. ()8
36. 25 81
37. 43 6n+1
38. 18 42 24
39.127
40.50
41.×
42.√
43.√
44.×
45.√
46.×
47.√
48.√
49.√
50.×
51.(1)52-42=5+4
(2)72-62=7+6(答案不唯一)
(3)202-192+182-172+162-152+…+22-12
=20+19+18+17+…+3+2+1
=(20+1)×20÷2
=21×20÷2
=420÷2
=210
52.50÷9=5(圈)⋯⋯5(次)
7-5=2(号)
答:花是从2号同学手上开始传的。
53.由题意可知:排列为1,3,5,7,……2n-1,
2n-1=2001
解:2n-1+1=2001+1
2n=2002
2n÷2=2002÷2
n=1001
说明2001是第1001个奇数
1001÷4=250……1
所以是在第251行,该行是从左到右写,因此是第2列。
答:数2011排在第251行第2列。
54.由分析得,
(1)阴影部分表示a2-2ab+b2。
(2)我发现:a2-2ab+b2=(a-b)²。
55.如图:
56.第二层代表612,因为362和612的个位数字相同,又有数字6是一样的,对照第二层和第四层的窗户,所以第二层代表612。
57.(1)如图所示:
(个)
第⑤个点图总共有25个点。
(2)第n个点图里一共有n2个点。
58.(1)80×1.6÷(0.4×0.4)=800(块)
(2)800÷16×4=200(块)
59.图1有2个小三角形,共有2+1=3个三角形;
图2有3个小三角形,共有3+2+1=6个三角形;
图3有4个小三角形,共有4+3+2+1=10个三角形;
图4有5个小三角形,共有5+4+3+2+1=15个三角形;
由此得出规律:图形中的小三角形个数为n,则图中三角形的总个数就是1+2+3+4+…+n。
60.(1)提示:
一个梯形的面积=(a+b)×(a-b)÷2
阴影部分的面积=a2-b2=(a+b)×(a-b)÷2×2=(a+b)×(a-b)
(2)912-902=(91+90)×(91-90)=181,
542-462=(54+46)×(54-46)=800.
人教版六年级上册8 数学广角——数与形优秀同步测试题: 这是一份人教版六年级上册8 数学广角——数与形优秀同步测试题,共16页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。
人教版六年级上册8 数学广角——数与形精品当堂检测题: 这是一份人教版六年级上册8 数学广角——数与形精品当堂检测题,共16页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。
人教版六年级上册4 比优秀练习题: 这是一份人教版六年级上册4 比优秀练习题,共14页。试卷主要包含了选择题,填空题,判断题,解答题等内容,欢迎下载使用。