终身会员
搜索
    上传资料 赚现金
    第1章二次函数1.2二次函数的图象与性质第4课时二次函数y=ax_h2+ka≠0的图象与性质教案(湘教版九下)
    立即下载
    加入资料篮
    第1章二次函数1.2二次函数的图象与性质第4课时二次函数y=ax_h2+ka≠0的图象与性质教案(湘教版九下)01
    第1章二次函数1.2二次函数的图象与性质第4课时二次函数y=ax_h2+ka≠0的图象与性质教案(湘教版九下)02
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学湘教版九年级下册1.2 二次函数的图像与性质第4课时教学设计

    展开
    这是一份初中数学湘教版九年级下册1.2 二次函数的图像与性质第4课时教学设计,共4页。

    第4课时 二次函数y=a(x-h)2+k(a0)的图象与性质

    【知识与技能】

    1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.

    2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.

    3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.

    【过程与方法】

    经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.

    【情感态度】

    1.在小组活动中进一步体会合作与交流的重要性.

    2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.

    【教学重点】

    二次函数y=a(x-h)2+k的图象与性质.

    【教学难点】

    由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.

    一、情境导入,初步认识

    复习回顾:同学们回顾一下:

    y=ax2,y=a(x-h)2,(a0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?

    如何由y=ax2(a0)的图象平移得到y=a(x-h)2的图象?

    猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?

    二、思考探究,获取新知

    探究1  y=a(x-h)2+k的图象和性质

    1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:

    y=-(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?

    将抛物线y=-x2向左平移1个单位,再向下平移1个单位得抛物线

    y=-(x+1)2-1.

    2.同学们讨论回答:

    一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.

    抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?

    探究2  二次函数y=a(x-h)2+k的应用

    【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.

    答案:抛物线,直线x=h,(h,k),上,下

    三、典例精析,掌握新知

    例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式. 

    【分析】平移前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.

    解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.

    【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.

    例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.

    【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.

    解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,点(0,2)在图象上,144a+20=2,a=- ,y=- (x-12)2+20.当x=20时,y=-×(20-12)2+20=12,即抛物线过点(20,12),该火球能点燃目标.

    【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.

    四、运用新知,深化理解

    1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须(   

    A.先向左平移4个单位,再向下平移1个单位

    B.先向右平移4个单位,再向上平移1个单位

    C.先向左平移1个单位,再向下平移4个单位

    D.先向右平移1个单位,再向上平移4个单位

    2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则ABC的周长为(   

    A.4       B.4+4      C.12    D.2+4

    3.函数y=ax2-a与y=ax-a(a0)在同一坐标系中的图象可能是(   

    4.二次函数y=-2x2+6的图象的对称轴是         ,顶点坐标是         ,当x         时,y随x的增大而增大.

    5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a=         ,c=         .

    6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.

    【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.

    【答案】1.B  2.B  3.C  4.y轴,(0,6),<0  5.3,2  6.y=(x-1)2-4

    五、师生互动,课堂小结

    1.这节课你学到了什么,还有哪些疑惑?

    2.在学生回答的基础上,教师点评:二次函数y=a(x-h)2+k的图象与性质;如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.

    【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.

    1.教材P151~3题.

    2.完成同步练习册中本课时的练习.

    掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.

     

    相关教案

    初中华师大版2. 二次函数y=ax2+bx+c的图象与性质一等奖第1课时教学设计: 这是一份初中华师大版2. 二次函数y=ax2+bx+c的图象与性质一等奖第1课时教学设计,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    华师大版九年级下册2. 二次函数y=ax2+bx+c的图象与性质公开课第2课时教案: 这是一份华师大版九年级下册2. 二次函数y=ax2+bx+c的图象与性质公开课第2课时教案,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    初中华师大版第26章 二次函数26.2 二次函数的图象与性质2. 二次函数y=ax2+bx+c的图象与性质优秀第4课时教案及反思: 这是一份初中华师大版第26章 二次函数26.2 二次函数的图象与性质2. 二次函数y=ax2+bx+c的图象与性质优秀第4课时教案及反思,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map