所属成套资源:高考数学一轮复习考点测试刷题本(含答案解析)
高考数学一轮复习考点测试刷题本50 圆锥曲线综合题(含答案解析)
展开
这是一份高考数学一轮复习考点测试刷题本50 圆锥曲线综合题(含答案解析),共9页。
2020高考数学(文数)考点测试刷题本50 圆锥曲线综合题1.在平面直角坐标系中,直线不过原点,且与椭圆有两个不同的公共点A,B.(Ⅰ)求实数m取值所组成的集合M;(Ⅱ)是否存在定点P使得任意的m∈M,都有直线PA,PB的倾斜角互补.若存在,求出所有定点P的坐标;若不存在,请说明理由. 2.如图,已知抛物线,点A,,抛物线上的点.过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求的最大值. 3.已知椭圆C:,离心率为.(I)求椭圆C的标准方程;(Ⅱ)设椭圆C的下顶点为A,直线l过定点,与椭圆交于两个不同的点M、N,且满足|AM|=|AN|.求直线l的方程. 4.已知F1、F2分别为椭圆C:(a>b>0)的左、右焦点, 且离心率为,点椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在斜率为k的直线与椭圆C交于不同的两点M、N,使直线与的倾斜角互补,且直线是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由。 5.抛物线y2=x与直线x-2y-3=0的两个交点分别为P、Q,点M在抛物线上从P向Q运动(点M不同于点P、Q),(Ⅰ)求由抛物线y2=x与直线x-2y-3=0所围成的封闭图形面积;(Ⅱ)求使⊿MPQ的面积为最大时M点的坐标. 6.已知M为椭圆C:+=1上的动点,过点M作x轴的垂线,垂足为D,点P满足=.(1)求动点P的轨迹E的方程;(2)若A,B两点分别为椭圆C的左、右顶点,F为椭圆C的左焦点,直线PB与椭圆C交于点Q,直线QF,PA的斜率分别为kQF,kPA,求的取值范围. 7.已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过点P作斜率为的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值. 8.在平面直角坐标系xOy 中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),离心率e=.(1)求椭圆G 的标准方程;(2)已知直线l1:y=kx+m1与椭圆G交于 A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.①证明:m1+m2=0;②求四边形ABCD 的面积S 的最大值.
答案解析1. 2. 3.4.解析: 5.(1) (2) 6.解:(1)设P(x,y),M(m,n),依题意知D(m,0),且y≠0.由=,得(m-x,-y)=(0,-n),则有⇒又M(m,n)为椭圆C:+=1上的点,∴+=1,即x2+y2=25,故动点P的轨迹E的方程为x2+y2=25(y≠0).(2)依题意知A(-5,0),B(5,0),F(-4,0),设Q(x0,y0),∵线段AB为圆E的直径,∴AP⊥BP,设直线PB的斜率为kPB,则kPA=-,==-kQFkPB=-kQFkQB=-·=-=-===,∵点P不同于A,B两点且直线QF的斜率存在,∴-5<x0<5且x0≠-4,又y=在(-5,-4)和(-4,5)上都是减函数,∴∈(-∞,0)∪,故的取值范围是(-∞,0)∪. 7.(1)解 因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明 设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0. (*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=所以|PA|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|PA|2+|PB|2为定值. 8.
相关试卷
这是一份高考数学一轮复习考点测试刷题本48 双曲线(含答案解析),共8页。
这是一份高考数学一轮复习考点测试刷题本47 椭圆(含答案解析),共8页。
这是一份高考数学一轮复习考点测试刷题本46 圆与方程(含答案解析),共6页。