2022-2023学年广西钦州市钦南区犀牛角中学数学七下期末教学质量检测模拟试题含答案
展开2022-2023学年广西钦州市钦南区犀牛角中学数学七下期末教学质量检测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是( )
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
2.等边三角形的边长为2,则它的面积为
A. B. C. D.1
3.某校组织数学学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表,如果从这四位同学中选出一名晋级(总体水平高且状态稳定)你会推荐( )
| 甲 | 乙 | 丙 | 丁 |
平均分 | 92 | 94 | 94 | 92 |
方差 | 35 | 35 | 23 | 23 |
A.甲 B.乙 C.丙 D.丁
4.若分式的值为0,则x的值等于
A.0 B.3 C. D.
5.某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数变小,方差变小 B.平均数变大,方差变大
C.平均数变大,方差不变 D.平均数变大,方差变小
6.如图,点是矩形的对角线的中点,是边的中点,若,则的长为( )
A.5 B.6 C.8 D.10
7.下列关于的方程中,有实数解的为( )
A. B.
C. D.
8.下列式子正确的是( )
A.若,则x<y B.若bx>by,则x>y
C.若,则x=y D.若mx=my,则x=y
9.下列多项式中不能用公式进行因式分解的是( )
A.a2+a+ B.a2+b2-2ab C. D.
10.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
11.若一组数据的方差是3,则的方差是( )
A.3 B.6 C.9 D.12
12.方程的解是
A. B. C.或 D.或
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.已知y+2与x-3成正比例,且当x=0时,y=1,则当y=4时,x的值为________.
14.命题“角平分线上的点到这个角的两边的距离相等”的逆命题是______,它是___命题(填“真”或“假”).
15.一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______
16.样本容量为 80,共分为六组,前四个组的频数分别为 12,13,15,16,第五组的频率 是 0.1,那么第六组的频率是_____.
17.若是方程的一个根,则的值为____________.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图,已知直线经过点,交x轴于点A,y轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.
当时,求证:;
连接CD,若的面积为S,求出S与t的函数关系式;
在运动过程中,直线CF交x轴的负半轴于点G,是否为定值?若是,请求出这个定值;若不是,请说明理由.
19.(5分)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN=" " °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
20.(8分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.
(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;
(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.
21.(10分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
(1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);
②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
(3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?
22.(10分)如图,在等腰梯形ABCD中,AB=DC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点. (1)求证:四边形MENF是菱形; (2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.
23.(12分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为1,且△AOH的面积为1.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、A
2、A
3、C
4、C
5、D
6、A
7、C
8、C
9、D
10、C
11、D
12、C
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、-1
14、到角的两边距离相等的点在角平分线上, 真.
15、2
16、0.2.
17、1
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)见解析;(2);(3).
19、(1)见详解;(2)见详解;(3)
20、(1)7800元;(2)购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
21、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.
22、见解析
23、(1)y=-x;(2)点P的坐标为(5,0)或(﹣5,0).
广西钦州市钦南区犀牛角中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份广西钦州市钦南区犀牛角中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共7页。
2023-2024学年广西钦州市钦南区犀牛角中学九年级数学第一学期期末教学质量检测试题含答案: 这是一份2023-2024学年广西钦州市钦南区犀牛角中学九年级数学第一学期期末教学质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx+c,﹣3﹣等内容,欢迎下载使用。
2023-2024学年广西钦州市钦南区犀牛角中学数学八年级第一学期期末质量检测试题含答案: 这是一份2023-2024学年广西钦州市钦南区犀牛角中学数学八年级第一学期期末质量检测试题含答案,共8页。试卷主要包含了下列各数中为无理数的是,的三边长分别为,下列条件,下列说法中正确的个数是,下列命题等内容,欢迎下载使用。