2022-2023学年山东省济南市莱芜区莲河学校数学七下期末学业水平测试模拟试题含答案
展开2022-2023学年山东省济南市莱芜区莲河学校数学七下期末学业水平测试模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于( )
A.20 B.10 C.4 D.2
2.如图,在中,,则的度数为( )
A. B. C. D.
3.下列等式从左到右的变形是因式分解的是()
A.
B.
C.
D.
4.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数不变,方差不变 B.平均数不变,方差变大
C.平均数不变,方差变小 D.平均数变小,方差不变
5.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )
A.40° B.36° C.30° D.25°
6.故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:
①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);
②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);
③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);
④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是( )
A.①② B.①③ C.①④ D.②③
7.下列条件中,不能判定一个四边形是平行四边形的是( )
A.两组对边分别平行 B.一组对边平行且相等 C.两组对角分别相等 D.一组对边相等且一组对角相等
8.施工队要铺设米的下水管道,因在中考期间需停工天,每天要比原计划多施工米才能按时完成任务.设原计划每天施工米,所列方程正确的是( )
A. B.
C. D.
9.如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是( )
A.2 B.2 C.2 D.
10.用配方法解一元二次方程时,此方程配方后可化为( )
A. B. C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC= _________
12.一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____
13.如图,是菱形的对角线上一点,过点作于点. 若,则点到边的距离为______.
14.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .
15.在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
16.如果正数m的平方根为x+1和x-3,则m的值是_____
三、解下列各题(本大题共8小题,共72分)
17.(8分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)
| 1号 | 2号 | 3号 | 4号 | 5号 | 平均数 | 方差 |
八(1)班 | 139 | 148 | 150 | 160 | 153 | 150 | 46.8 |
八(5)班 | 150 | 139 | 145 | 147 | 169 | 150 | 103.2 |
根据以上信息,解答下列问题:
(1)求两班的优秀率及两班数据的中位数;
(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.
18.(8分)某商店经销某种玩具,该玩具每个进价 20 元,为进行促销,商店制定如下“优惠” 方案:如果一次销售数量不超过 5 个,则每个按 50 元销售:如果一次销售数量超过 5 个,则每增加一个,所有玩具均降低 1 元销售,但单价不得低于 30 元,一次销售该玩具的单价 y(元)与销售数量 x(个)之间的函数关系如下图所示.
(1)结合图形,求出 m 的值;射线 BC 所表示的实际意义是什么;
(2)求线段 AB 满足的 y 与 x 之间的函数解析式,并直接写出自变量的取值范围;
(3)当销售 15 个时,商店的利润是多少元.
19.(8分)如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.
求证:∠DAF=∠BCE.
20.(8分)村有肥料200吨,村有肥料300吨,现要将这些肥料全部运往、两仓库.从村往、两仓库运肥料的费用分别为每吨20元和25元;从村往、两仓库运肥料的费用分别为每吨15元和18元;现仓库需要肥料240吨,现仓库需要肥料260吨.
(1)设村运往仓库吨肥料,村运肥料需要的费用为元;村运肥料需要的费用为元.
①写出、与的函数关系式,并求出的取值范围;
②试讨论、两村中,哪个村的运费较少?
(2)考虑到村的经济承受能力,村的运输费用不得超过4830元,设两村的总运费为元,怎样调运可使总运费最少?
21.(8分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:
(1) ;
(2) .
22.(10分)解不等式组:,并在数轴上表示出它的解集.
23.(10分)如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点. 如:线段AB的两个端点都在格点上.
(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在格点上,且平行四边形ABCD的面积为15;
(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在格点上,则菱形ABEF的对角线AE=________,BF=________;
(3)在图3中画一个以AB为边的矩形ABMN(不是正方形),点M、N在格点上,则矩形ABMN的长宽比=______.
24.(12分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
中学生综合素质评价成绩 | 中学生综合素质评价等级 |
A级 | |
B级 | |
C级 | |
D级 |
现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:
(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;
(2)补全图中的条形统计图;
(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、C
5、B
6、C
7、D
8、A
9、A
10、A
二、填空题(本大题共有6小题,每小题3分,共18分)
11、1
12、m>
13、4
14、50°.
15、8.
16、4
三、解下列各题(本大题共8小题,共72分)
17、 (1) 八(1)班的优秀率为,八(2)班的优秀率为 八(1)、八(2)班的中位数分别为150,147;(2)八(1)班获冠军奖
18、(1)25、当一次销售数量超过 25 个时,每个均按 30 元销售;(2)线段 AB 满足的 y 与 x 之间的函数解析式是 y=-x+55(5≤x≤25);(3)此时商店的利润为300元.
19、详见解析
20、(1)①见解析;②见解析;(2)见解析.
21、(1)见解析;(2)见解析
22、﹣2<x≤3
23、(1)答案见详解;(1),;(3)1.
24、(1)100;;(2)补图见解析;(3)240人.
2023-2024学年山东省济南市莱芜区莲河学校九上数学期末综合测试试题含答案: 这是一份2023-2024学年山东省济南市莱芜区莲河学校九上数学期末综合测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,属于真命题的是等内容,欢迎下载使用。
山东省济南市莱芜区莲河学校2023-2024学年八上数学期末联考模拟试题含答案: 这是一份山东省济南市莱芜区莲河学校2023-2024学年八上数学期末联考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的个数,对于任何整数,多项式都能,若,,则的值是,在平面直角坐标系中,若点P等内容,欢迎下载使用。
济南市莱芜区莲河学校片区联盟2023--2024学年上学期七年级数学12月月考试题: 这是一份济南市莱芜区莲河学校片区联盟2023--2024学年上学期七年级数学12月月考试题,共5页。试卷主要包含了25的算术平方根是A,在平面直角坐标系中,点AA,已知点PA,若一次函数y=等内容,欢迎下载使用。