2022-2023学年江西省吉安市白鹭洲中学数学七年级第二学期期末学业质量监测模拟试题含答案
展开2022-2023学年江西省吉安市白鹭洲中学数学七年级第二学期期末学业质量监测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若二次根式有意义,那么的取值范围是( )
A. B. C. D.
2.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:
| 甲 | 乙 | 丙 | 丁 |
平均数(cm) | 561 | 560 | 561 | 560 |
方差s2 | 3.5 | 3.5 | 15.5 | 16.5 |
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
3.如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,连结OE,若AC=12,△OAE的周长为15,则▱ABCD的周长为( )
A.18 B.27 C.36 D.42
4.如图,一个四边形花坛ABCD,被两条线段MN, EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1、S2、S3、S4,若MN∥AB∥DC,EF∥DA∥CB,则有( )
A.S1= S4 B.S1 + S4 = S2 + S3 C.S1 + S3 = S2 + S4 D.S1·S4 = S2·S3
5.如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()
A.1个; B.2个;
C.3个; D.4个.
6.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( )
A., , B.,, C.,, D.4,5,6
7.如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,两个正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
8.如图,下列能判定AB∥CD的条件的个数是( )
①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠1.
A.1个 B.2个 C.3个 D.4个
9.下列调查适合抽样调查的是( )
A.审核书稿中的错别字
B.对某校八一班同学的身高情况进行调查
C.对某校的卫生死角进行调查
D.对全县中学生目前的睡眠情况进行调查
10.下列二次根式化简后,能与合并的是( )
A. B. C. D.
11.下列因式分解正确的是( )
A.x3﹣x=x(x2﹣1) B.﹣a2+6a﹣9=﹣(a﹣3)2
C.x2+y2=(x+y)2 D.a3﹣2a2+a=a(a+1)(a﹣1)
12.关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,则k的取值范围( )
A. B.且k≠0 C. D.且k≠0
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.若,则3a______3b;______用“”,“”,或“”填空
14.若分式 有意义,则的取值范围是_______________ .
15.某天工作人员在一个观测站测得:空气中PM2.5含量为每立方米0.0000023g,则将0.0000023用科学记数法表示为_____.
16.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
17.将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)某校某次外出社会实践活动分为三类,因资源有限,七年级7班分配到20个名额,其中甲类2个、乙类8个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置、30个空签.采取抽签的方式来确定名额分配,请解决下列问题:
(1)该班小明同学恰好抽到丙类名额的概率是多少?
(2)该班小丽同学能有幸去参加实践活动的概率是多少?
(3)后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?
19.(5分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
20.(8分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
21.(10分)由于受到手机更新换代的影响,某手机店经销的甲型号手机二月份售价比一月份售价每台降价500元.如果卖出相同数量的甲型号手机,那么一月份销售额为9万元,二月份销售额只有8万元.
(1)一月份甲型号手机每台售价为多少元?
(2)为了提高利润,该店计划三月份加入乙型号手机销售,已知甲型号每台进价为3500元,乙型号每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
22.(10分)如图,在中,,,,以线段为边向外作等边,点是线段的中点,连结并延长交线段于点.
(1)求证:四边形为平行四边形;
(2)求平行四边形的面积;
(3)如图,分别作射线,,如图中的两个顶点,分别在射线,上滑动,在这个变化的过程中,求出线段的最大长度.
23.(12分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.
编号 | 1 | 2 | 3 | 4 | 5 |
甲 | 12 | 13 | 14 | 15 | 16 |
乙 | 13 | 14 | 16 | 12 | 10 |
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、C
2、A
3、C
4、D
5、C
6、A
7、C
8、B
9、D
10、C
11、B
12、B
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、
14、
15、2.3×10﹣1.
16、:k<1.
17、2
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1);(2);(3)8个名额
19、(1)证明见解析(2)
20、 (1)一名熟练工加工1件A型服装和1件B型服装各需要2小时和1小时;(2)该服装公司执行规定后违背了广告承诺.
21、(1)一月份甲型号手机每台售价为4500元;(2)共有5种进货方案.
22、 (1)证明见解析;(2);(3).
23、甲种水稻出苗更整齐
江西省吉安市白鹭洲中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份江西省吉安市白鹭洲中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了对于二次函数y=4,如果,那么代数式的值是.等内容,欢迎下载使用。
2023-2024学年江西省南昌石埠中学数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年江西省南昌石埠中学数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
2022-2023学年贺州市重点中学数学七年级第二学期期末学业质量监测模拟试题含答案: 这是一份2022-2023学年贺州市重点中学数学七年级第二学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,一次函数,当时,x的取值范围是,下列命题的逆命题正确的是,下列方程中有一根为3的是等内容,欢迎下载使用。