2022-2023学年海南省省直辖县七下数学期末学业质量监测模拟试题含答案
展开2022-2023学年海南省省直辖县七下数学期末学业质量监测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列各式正确的是( )
A.= ±3 B.= ±3 C.=3 D.=-3
2.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )
工资(元) | 2000 | 2200 | 2400 | 2600 |
人数(人) | 1 | 3 | 4 | 2 |
A.2400元、2400元
B.2400元、2300元
C.2200元、2200元
D.2200元、2300元
3.已知关于的方程的两根互为倒数,则的值为( )
A. B. C. D.
4.若代数式 在实数范围内有意义,则的取值范围是( )
A. B. C. D.且
5.定义:如果一个关于的分式方程的解等于,我们就说这个方程叫差解方程.比如:就是个差解方程.如果关于的分式方程是一个差解方程,那么的值是( )
A. B. C. D.
6.下列方程没有实数根的是( )
A.x3+2=0 B.x2+2x+2=0
C.=x﹣1 D.=0
7.下列说法中,正确的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线相等的四边形是矩形
C.有一组邻边相等的矩形是正方形 D.对角线互相垂直的四边形是菱形
8.一组数据5,2,3,5,4,5的众数是( )
A.3 B.4 C.5 D.8
9.如图,在菱形中,=120°,点E是边的中点,P是对角线上的一个动点,若AB=2,则PB+PE的最小值是( )
A.1 B. C.2 D.
10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,在平行四边形中,度,,,则______.
12.将分别写有“绿色闵行”、“垃圾分类”、“要先行”的三张大小、质地相同的卡片随机排列,那么恰好排列成“绿色闵行垃圾分类要先行”的概率是__________.
13.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.
14.分解因式:=________.
15. 若A(x1,y1)和B(x2,y2)在反比例函数的图象上,且0<x1<x2,则y1与y2的大小关系是y1 y2;
16.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
三、解下列各题(本大题共8小题,共72分)
17.(8分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.
特例感知:
(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;
①当△ABC是一个等边三角形时,AF与BC的数量关系是: ;
②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是 ;
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.
拓展应用:
(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.
18.(8分)某校举办的八年级学生数学素养大赛共设个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):
| 七巧板拼图 | 趣题巧解 | 数学应用 |
小米 | |||
小麦 |
若七巧板拼图,趣题巧解,数学应用三项得分分别按折算计入总分,最终谁能获胜?
若七巧板拼图按折算,小麦 (填“可能”或“不可能”)获胜.
19.(8分)某工厂车间为了了解工人日均生产能力的情况,随机抽取10名工人进行测试,将获得数据制成如下统计图.
(1)求这10名工人的日均生产件数的平均数、众数、中位数;
(2)若日均生产件数不低于12件为优秀等级,该工厂车间共有工人120人,估计日均生产能力为“优秀”等级的工人约为多少人?
20.(8分)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:
(1)本次调查的学生人数为__________,娱乐节目在扇形统计图中所占圆心角的度数是__________度.
(2)请将条形统计图补充完整:
(3)若该中学有2000名学生,请估计该校喜爱动画节目的人数.
21.(8分)已知x=+1 , y=-1 , 求x2+xy+y2的值.
22.(10分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;
(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;
(2)图②中若DE︰EC=3︰1,计算BF︰FC= ;图③中若DE︰EC=4︰1,计算BF︰FC= ;
(3)图④中若DE︰EC=︰1,猜想BF︰FC= ;并证明你的结论
23.(10分)如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.
(1)若且点的横坐标为3.
①点的坐标为,点的坐标为(不需写过程,直接写出结果);
②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.
(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.
24.(12分)如图,在中,AD平分交BC于点D,F为AD上一点,且,BF的延长线交AC于点E.
备用图
(1)求证:;
(2)若,,,求DF的长;
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、C
4、D
5、D
6、B
7、C
8、C
9、B
10、A
二、填空题(本大题共有6小题,每小题3分,共18分)
11、
12、
13、1
14、
15、>;
16、
三、解下列各题(本大题共8小题,共72分)
17、(1)AF=BC;a;(2)猜想:AF=BC,(3)
18、(1)小麦获胜;(2)不可能
19、(1)平均数为11,众数为13,中位数为12.(2)优秀等级的工人约为72人.
20、 (1) 300,72°;(2)详见解析;(3)600.
21、7
22、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)
23、(1)①点坐标为,点坐标为;②存在,周长;
(2)不变,的面积为
24、(1)详见解析;(2)
海南省省直辖县2023-2024学年数学九上期末统考模拟试题含答案: 这是一份海南省省直辖县2023-2024学年数学九上期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
海南省省直辖县2023-2024学年八上数学期末监测模拟试题含答案: 这是一份海南省省直辖县2023-2024学年八上数学期末监测模拟试题含答案,共7页。试卷主要包含了下列命题为假命题的是,分式方程+=1的解是等内容,欢迎下载使用。
广西昭平县2022-2023学年数学七下期末学业质量监测模拟试题含答案: 这是一份广西昭平县2022-2023学年数学七下期末学业质量监测模拟试题含答案,共6页。试卷主要包含了在四边形ABCD中等内容,欢迎下载使用。