所属成套资源:2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版)
- 第04讲 一元二次方程几何应用之动点问题专题训练-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版) 试卷 0 次下载
- 第05讲 平行四边形单元整体分类总复习-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版) 试卷 0 次下载
- 第07讲 三角形的中位线专题复习-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版) 试卷 0 次下载
- 第08讲 特殊平行四边形单元整体分类总复习-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版) 试卷 1 次下载
- 第09讲 特殊平行四边形中的折叠问题-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版) 试卷 0 次下载
第06讲 平行四边形存在性问题专题探究-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版)
展开这是一份第06讲 平行四边形存在性问题专题探究-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版),文件包含第06讲平行四边形存在性问题专题探究解析版docx、第06讲平行四边形存在性问题专题探究原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
第6讲 平行四边形存在性问题专题探究
【知识点睛】
知识储备:①平行四边形是中心对称图形
②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分
③中点公式:
方法策略:
(1)有3个定点,找第4个点形成平行四边形时:
①设第4个点的坐标
②以3个定点组成的3条线段为对角线分类讨论
③以中心对称图形的性质为等量关系列式求解
例,如图所示,平面直角坐标系内有A、B、C三点,在平面内找第4个点,构成平行四边形;
(2)有2个定点,且另外两个动点均在特殊的位置上时,方法策略同上。
类型一 几何背景下的平行四边形存在性问题
1.如图,平行四边形ABCD的对角线AC,BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.若点E,F同时运动,设运动时间为t秒,当t= 时,四边形AECF是平行四边形.
2.如图,四边形ABCD中,AB∥DC,DC=6cm,AB=9cm.点P以1cm/s的速度由A点向B点运动,同时点Q以2cm/s的速度由C点向D点运动,其中一点到达终点时,另一点也停止运动,当线段PQ将四边形ABCD截出一个平行四边形时,此时的运动时间为
s.
3.如图,在▱ABCD中,AB=10cm,F是AB的中点,E为边CD上一点,DE=4cm.点M从D点出发,沿D→C以1cm/s的速度匀速运动到点C;同时点N从点B出发,沿B→A以2cm/s的速度匀速运动到点A.一个点停止运动后,另一个点也随之停止运动.当点M运动时间是 秒时,以点M,E,N,F为顶点的四边形是平行四边形.
4.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点O也同时停止运动,当点P运动( )秒时,以点P、Q、E、F为顶点的四边形是平行四边形.
A.3 B.3或5 C.5 D.4或5
5.如图所示,在平行四边形ABCD中,AB=5cm,AD=9cm.点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时,P、Q同时停止运动,设运动时间为t(s)且t>0,当以P,D,Q,B为顶点的四边形是平行四边形时,则t的所有可能值为 .
6.如图,在平面直角坐标系中,已知点A的坐标为(9,0),点C的坐标为(3,3),四边形OABC是平行四边形,点D、E份别在边OA、BC上,且OD=OA,CE=4.动点P、Q在平行四边形OABC的一组邻边上,以点D、E、P、Q为顶点的四边形是平行四边形时,其面积为 .
7.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,动点P、Q分别从A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,其中一动点到达终点时,另一动点随之停止运动,设运动时间为t秒.
(1)AP= ,BQ= ,(分别用含有t的式子表示);
(2)当四边形PQCD的面积是四边形ABQP面积的2倍时,求出t的值.
(3)当点P、Q与四边形ABCD的任意两个顶点所形成的四边形是平行四边形时,直接写出t的值.
类型二 “三定一动”求平行四边形的顶点坐标
1.在平面直角坐标系xOy中,已知A(1,﹣1),B(4,2),C(0,3),下列坐标不能与A、B、C构成平行四边形的是( )
A.(﹣3,0) B.(5,﹣2) C.(3,6) D.(﹣3,﹣2)
2.在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在x轴上方找到点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是 .
3.在平面直角坐标系中,已知点A(4,0),点B(﹣3,2),点C(0,2),点P从点B出发,以2个单位每秒的速度沿射线BC运动,点Q从点A出发,开始以1个单位每秒的速度向原点O运动,到达原点后立刻以原来3倍的速度沿射线OA运动,若P,Q两点同时出发,设运动时间为t秒,则当t= 时,以点A,Q,C,P为顶点的四边形为平行四边形.
4.如图,在平面直角坐标系的第一象限找一点A,第二象限找一点B,使OA=,OB=2,AB=5,且A,B都是格点,连接OA,OB,AB.(画出一个△OAB即可).
(1)判断△OAB的形状,并说明理由;
(2)是否存在点C,使得O,A,B,C四点构成的四边形为平行四边形?如果存在,请直接写出点C的坐标;如果不存在,请说明理由.
5.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx﹣4k(k≠0).
(1)求A,C的坐标;
(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;
(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
类型三 “两定两动”求平行四边形的顶点坐标
1.在平面直角坐标系中,已知A(﹣4,2),B(2,5),在x轴、y轴上分别有两动点C、D,若以点A,B,C,D为顶点的四边形是平行四边形,则点C的坐标为 .
2.在平面直角坐标系中,A(﹣1,1),B(3,2),C(2m,3m+1),点D在直线y=﹣1上,若以A,B,C,D四点为顶点的四边形是平行四边形,则点D的坐标为 .
3.如图,在平面直角坐标系xOy,直线y=x+1与y=﹣2x+4交于点A,两直线与x轴分别交于点B和点C,D是直线AC上的一个动点,直线AB上是否存在点E,使得以E,D,O,A为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.
4.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到线段CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求证:△BOC≌△CED;
(2)请直接写出点D的坐标,并求出直线BC的函数关系式;
(3)若点P是x轴上的一个动点,点Q是线段CB上的点(不与点B、C重合),是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的P点坐标.若不存在,请说明理由.
5.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OA=6,∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.
(1)求点D的坐标;
(2)在线段AC上有一动点P,连接EP和OP,求当△OPE周长最小时,点P的坐标,若M,N是x轴上两动点(M在点N左侧)且MN=1,求当四边形CMNP周长最小时,M点的坐标;
(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.
相关试卷
这是一份【重难点讲义】浙教版数学八年级下册-第06讲 平行四边形存在性问题专题探究,文件包含重难点讲义浙教版数学八年级下册-第06讲平行四边形存在性问题专题探究原卷版docx、重难点讲义浙教版数学八年级下册-第06讲平行四边形存在性问题专题探究解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份第05讲 平行四边形单元整体分类总复习-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版),文件包含第05讲平行四边形单元整体分类总复习原卷版docx、第05讲平行四边形单元整体分类总复习解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
这是一份期末专项复习5 八下特殊四边形存在性问题专项训练-2023-2024学年八年级数学下册重难点及章节分类精品讲义(浙教版),文件包含期末专项复习5八下特殊四边形存在性问题专项训练解析版docx、期末专项复习5八下特殊四边形存在性问题专项训练原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。