2022-2023学年福建省厦门市瑞景外国语分校七年级数学第二学期期末监测模拟试题含答案
展开2022-2023学年福建省厦门市瑞景外国语分校七年级数学第二学期期末监测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.有m支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是( )
A. B.
C. D.
2.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
A. B. C. D.
3.由线段a,b,c可以组成直角三角形的是( )
A.a=5,b=8,c=7 B.a=2,b=3,c=4
C.a=24,b=7,c=25 D.a=5,b=5,c=6
4.从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且,,,.根据统计结果,最适合参加竞赛的两位同学是( )
A.甲、乙 B.丙、丁 C.甲、丁 D.乙、丙
5.一个多边形的每一个内角均为,那么这个多边形是( )
A.七边形 B.六边形 C.五边形 D.正方形
6.式子,,,,中是分式的有
A.1个 B.2个 C.3个 D.4个
7.将点A(-2,-3)向左平移3个单位,再向上平移2个单位得到点B,则B的坐标是( )
A.(1,-3) B.(-2,1) C.(-5,-1) D.(-5,-5)
8.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是( )
A.16 B.14 C.26 D.24
9.计算的值为( )
A.9 B.1 C.4 D.0
10.数据1,3,5,7,9的方差是( ).
A.2 B.4 C.8 D.16
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
12.将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.
13.若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为_________________.
14.如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.
15.如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=_____.
16.如图,在矩形中,对角线,交于点,要使矩形成为正方形,应添加的一个条件是______.
三、解下列各题(本大题共8小题,共72分)
17.(8分)我国国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚两地海拔高度约为米,山顶处的海拔高度约为米,由处望山脚处的俯角为由处望山脚处的俯角为,若在两地间打通一隧道,求隧道最短为多少米?(结果取整数,参考数据)
18.(8分)如图,已知直线AQ与x轴负半轴交于点A,与y轴正半轴交于点Q,∠QAO=45°,直线AQ在y轴上的截距为2,直线BE:y=-2x+8与直线AQ交于点P.
(1)求直线AQ的解析式;
(2)在y轴正半轴上取一点F,当四边形BPFO是梯形时,求点F的坐标.
(3)若点C在y轴负半轴上,点M在直线PA上,点N在直线PB上,是否存在以Q、C、M、N为顶点的四边形是菱形,若存在请求出点C的坐标;若不存在请说明理由.
19.(8分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
20.(8分)某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):
次数,1, 2, 3, 4, 5, 6
甲:79,78,84,81,83,75
乙:83,77,80,85,80,75
利用表中数据,解答下列问题:
(1)计算甲、乙测验成绩的平均数.
(2)写出甲、乙测验成绩的中位数.
(3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)
(4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.
21.(8分)因式分解
(1)a4-16a2 (2)4x2+8x+4
22.(10分)直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B 两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B的坐标.
(2)求直线BC的解析式.
(3)直线 EF 的解析式为y=x,直线EF交AB于点E,交BC于点 F,求证:S△EBO=S△FBO.
23.(10分)如图,已知在△ABC中,AB=AC=13cm,D是AB上一点,且CD=12cm,BD=8cm.
(1)求证:△ADC是直角三角形;
(2)求BC的长
24.(12分)新定义:[a,b,c]为二次函数y=ax2+bx+e(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+3的“图象数”为[-1,2,3]
(1)二次函数y=x2-x-1的“图象数”为 .
(2)若图象数”是[m,m+1,m+1]的二次函数的图象与x轴只有一个交点,求m的值.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、C
4、C
5、B
6、B
7、C
8、C
9、B
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、(-2,-2)
12、 (-2,2)
13、 (2,-1)
14、
15、2或
16、(答案不唯一)
三、解下列各题(本大题共8小题,共72分)
17、1093
18、(1)直线AQ的解析式为y=x+2;(2)F(0,4);(3)存在,C(0,)或C(0,-10)
19、(1)见解析;
(2)见解析.
20、 (1)80分,80分 ;(2)80分; (3)9.33,11.33 ;(4)派甲去.
21、 (1) a2(a+4)(a-4);(2) 4(x+1)2
22、 (1) B (0,6);(2) y=3x+6;(3)见解析.
23、(1)见解析;(2)4cm.
24、(1)[,−1,−1];(2)m1=−1,m2=.
2023-2024学年福建省厦门市瑞景外国语分校九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年福建省厦门市瑞景外国语分校九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了把二次函数化成的形式是下列中的,下列是随机事件的是,方程变为的形式,正确的是等内容,欢迎下载使用。
福建省厦门市瑞景外国语分校2023-2024学年九上数学期末质量检测试题含答案: 这是一份福建省厦门市瑞景外国语分校2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了如图4,,如图,在中,,若,,则与的比是等内容,欢迎下载使用。
福建省厦门市瑞景外国语分校2023-2024学年数学八上期末质量检测模拟试题含答案: 这是一份福建省厦门市瑞景外国语分校2023-2024学年数学八上期末质量检测模拟试题含答案,共7页。试卷主要包含了下列各数组中,不是勾股数的是,下列结论正确的是等内容,欢迎下载使用。