人教A版 (2019)选择性必修 第三册第六章 计数原理6.3 二项式定理教学设计
展开6.3.1二项式定理
(人教A版普通高中教科书数学选择性必修第三册第六章)
一、教学内容
二项式定理.
二、教学目标
1.利用计数原理分析二项式的展开过程,归纳、猜想出二项式定理,并用计数原理加以证明;
2.会应用二项式定理求解二项展开式;
3.通过经历二项式定理的探究过程,体验“归纳、猜想、证明”的数学发现过程,提高自己观察、分析、概括的能力,以及 “从特殊到一般”、“从一般到特殊”等数学思想的应用能力;
4.感受二项式定理体现出的数学的内在和谐、对称美,了解相关数学史内容.
三、教学重点与难点
重点:应用二项式定理求解二项展开式
难点:利用计数原理分析二项式的展开式.
四、教学过程设计
1、问题探究
上一节学习了排列数公式和组合数公式,本节我们用它们解决一个在数学上有着广泛应用的展开式的问题。
问题1:我们知道
=a2+2ab+b2,
(1)观察以上展开式,分析其运算过程,你能发现什么规律?
(2)根据你发现的规律,你能写出的展开式吗?
(3)进一步地,你能写出的展开式吗?
我们先来分析的展开过程,根据多项式乘法法则,
可以看到,是2个相乘,只要从一个中选一项(选或),再从另一个中选一项(选 或),就得到展开式的一项,于是,由分步乘法计数原理,在合并同类项之前,的展开式共有=项,而且每一项都是( =0,1,2)的形式.
我们来分析一下形如的同类项的个数.
当=0时,=,这是由2个中都不选得到的,因此,出现的次数相
当于从2个中取0个(即都取)的组合数,即只有1个;
当=1时,= ,这是由1个中选,另一个选得到的,由于选定后,的选法也随之确定,因此, 出现的次数相当于从2个中取1个的组合数,即只有2个;
当=2时,= ,这是由2个中选得到的,因此,出现的次数相当于从2个中取2个的组合数,即只有1个;
由上述
问题2:仿照上述过程,你能利用计数原理,写出,的展开式吗?
类似
1.二项式定理
(a+b)n=_________________________ (n∈N*).
(1)这个公式所表示的规律叫做二项式定理.
(2)展开式:等号右边的多项式叫做(a+b)n的二项展开式,展开式中一共有______项.
(3)二项式系数:各项的系数____ (k∈{0,1,2,…,n})叫做二项式系数.
Can+Can-1b+Can-2b2+…+Can-kbk+…+Cbn
n+1 ; C
2.二项展开式的通项公式
(a+b)n展开式的第______项叫做二项展开式的通项,记作Tk+1=______.
k+1 ; Can-kbk
二项式定理形式上的特点
(1)二项展开式有n+1项,而不是n项.
(2)二项式系数都是(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.
(3)二项展开式中的二项式系数的和等于2n,即+…+=2n.
(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.
2、典例解析
例1.求的展开式.
解:根据二项式定理
+
1.(a+b)n的二项展开式有n+1项,是和的形式,各项的幂指数规律是:(1)各项的次数和等于n.(2)字母a按降幂排列,从第一项起,次数由n逐项减1直到0;字母b按升幂排列,从第一项起,次数由0逐项加1直到n.
2.逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.
例2.(1)求的展开式的第4项的系数;
(2)求的展开式中的系数.
解:的展开式的第4项是
因此,展开式第4项的系数是280.
(2) 的展开式的通项是
根据题意,得 ,因此,
二项式系数与项的系数的求解策略
(1)二项式系数都是组合数(k∈{0,1,2,…,n}),它与二项展开式中某一项的系数不一定相等,
要注意区分“二项式系数”与二项展开式中“项的系数”这两个概念.
(2)第k+1项的系数是此项字母前的数连同符号,而此项的二项式系数为.例如,在(1+2x)7的
展开式中,第4项是T4=17-3(2x)3,其二项式系数是=35,而第4项的系数是23=280.
五、课堂小结
1. 二项式定理;
2. 运用通项公式求指定项或指定项的系数.
六、课后作业
1、课本P31 练习1,2,3,4,5 (做在课本上)
2、课本P34 习题6.3 4、5
人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表教案设计: 这是一份人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表教案设计,共8页。教案主要包含了教学内容,教学目标,教学重点,具体教学过程设计,教学及课后反思等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学设计: 这是一份人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学设计,共4页。教案主要包含了内容与内容解析,目标与目标解析,教学问题诊断解析,教学过程设计,板书设计,目标检测设计等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合教案设计: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合教案设计,共6页。教案主要包含了内容与内容解析,目标与目标解析,教学问题诊断解析,教学支持条件分析,教学过程设计,目标检测设计等内容,欢迎下载使用。