搜索
    上传资料 赚现金
    【小单元教案】高中数学人教A版(2019)必修第一册--5.3.2 诱导公式的应用(第2课时)(课时教学设计)
    立即下载
    加入资料篮
    【小单元教案】高中数学人教A版(2019)必修第一册--5.3.2 诱导公式的应用(第2课时)(课时教学设计)01
    【小单元教案】高中数学人教A版(2019)必修第一册--5.3.2 诱导公式的应用(第2课时)(课时教学设计)02
    【小单元教案】高中数学人教A版(2019)必修第一册--5.3.2 诱导公式的应用(第2课时)(课时教学设计)03
    还剩3页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第一册5.3 诱导公式精品第2课时教学设计

    展开
    这是一份人教A版 (2019)必修 第一册5.3 诱导公式精品第2课时教学设计,共6页。教案主要包含了六.等内容,欢迎下载使用。

    5.3.2 诱导公式的应用(第2课时)
    (一)教学内容
    诱导公式五、六(±α的正弦、余弦和正切).
    (二)教学目标
    1、从三角函数的定义出发,借助单位圆的对称性,能推导±α的正弦、余弦和正切,发展直观想象、逻辑推理素养.
    2、通过分析公式五、公式六之间的关系,以及公式一~公式六之间的联系,形成诱导公式的整体架构,能利用诱导公式进行三角函数式的化简、求值与证明,发展数学运算的素养.
    (三)教学重点及难点:
    1、重点
    诱导公式五、六的探究.
    2、难点
    终边关于对称的两个角之间的关系.
    (四)教学过程设计
    问题1:上一节课,我们研究了公式二~公式四,你能说说我们是如何得到这些公式的吗?
    师生活动:学生发言回顾公式二~公式四的研究方法、研究路径,教师适时补充完善.
    追问:两个角的终边除了关于原点、x轴和y轴对称外,你认为还有哪些对称关系值得研究?你打算怎样研究?
    师生活动:上节课已经埋下伏笔,学生交流后确定值得研究的问题:两个角的终边关于对称时,这两个角的三角函数之间的关系,研究方法与前面类似.
    设计意图:通过回顾公式二~公式四的研究内容、研究路径,为研究公式五、六做好思想方法的准备,通过追问,引导学生发现和提出值得研究的问题,培养发现和提出问题的能力.
    问题2:你能类比公式二~公式四的研究过程,探究终边关于直线对称的两个角的三角函数的关系吗?
    师生活动:学生类比公式二~公式四的研究过程画图独立思考尝试:
    在直角坐标系内,设任意角α的终边与单位圆交于点P1,作P1关于直线的对称点P5
    (1)以OP5为终边的角为与角α有什么关系?
    (2)角与角α的三角函数值之间有什么关系?
    这里作P1关于直线y=x的对称点P5,确定以OP5为终边的角时,学生可能只画一种情况(如图一),以为终边的角都是与角终边相同的角,即.因此,只要探究角与的三角函数值之间的关系即可.
    追问1:提醒学生可以画终边在不同象限(或坐标轴上)的角(如图二),观察是否仍然成立?






    图一 图二 图三
    师生活动:这里可以采用验证的方法:先将与x轴非负半轴重合的射线绕原点旋转,旋转方向与角的方向相反,大小与相等,得到角的终边,再将逆时针旋转到,可以发现与OP1关于直线y=x对称.因此,与角终边关于直线y=x对称的角始终有的关系.
    追问2:角的关系已经有了,那直角坐标系中关于直线y=x对称的两个点P1与P5的坐标之间有什么关系呢?
    师生活动:学生分小组讨论,可以就图一先猜想点P1(x1,y1)与点P5(x5,y5)关于y=x对称,那么有
    x5= y1,y5= x1.引导学生利用全等知识对图一进行证明:如图三,作P1关于y轴的垂线,P5关于x轴的垂线,由于P1与P5关于y=x对称,我们可以证明图中的两个三角形全等,因此对应边相等,将长度转化为坐标关系,就有x5= y1,y5= x1.对于终边的其他的不同位置,同学们课后可以去证明它们的坐标依然有这种等量关系.
    追问3:最后角与角的三角函数值有什么关系?
    师生活动:学生独立思考写出诱导公式五.
    公式五:.
    设计意图:此处与第一课时的公式二的研究方法相同,不同之处在于对称轴变为直线,增加了推导的难度.将难点细化为问题串,引导学生逐个击破,经历推导公式的过程,培养学生转化与化归的思想,提升直观想象与逻辑推理素养.
    问题3:作关于y轴的对称点,又能得到什么结论?
    (1)以为终边的角与角有什么关系?
    (2)角的终边与角的终边具有怎样的关系?
    (3)与的坐标之间有什么关系?与P1的坐标之间又有什么关系呢?
    (4)角与角的三角函数值之间又有什么关系?
    师生活动:给出问题后,学生先类比问题2的解决方法独立思考,然后交流,教师适时补充完善.
    (1)以为终边的角都是与角终边相同的角,即.只要探究角与的三角函数值之间的关系即可.
    (2)轴对称角度:角的终边首先关于直线作对称,再关于y轴作对称,就得到的终边.
    旋转角度:角的终边逆时针旋转角,就得到角的终边.
    (3)通过观察易得:;.
    (4),(公式六).
    追问:你能不能从代数变换角度,利用已有公式直接推出公式六?
    师生活动:学生独立思考得出:


    设计意图:基于公式五的背景增加新的研究条件,提出问题,有利于培养学生发现与提出问题的能力.这里的重点是利用前面的学习经验,通过适当的几何变换、坐标变换,得出角与角的关系,以及点与、P1的坐标之间的关系,让学生进一步熟悉研究的一般方法.
    通过追问,引导学生用不同的方法推导公式,从不同的角度认识公式,建立公式之间更紧密的联系,提升对诱导公式整体性的认识,为灵活运用公式解决问题打下基础.提升直观想象、逻辑推理素养.
    问题四:例1 证明:(1); (2).
    师生活动:学生类比上一个问题的解决方法自行完成:
    证明:(1)
    (2)
    追问1:观察题目,发现题目的特征,并总结解决此类问题的思想方法.
    师生活动:学生思考、总结:题目中的所求角与诱导公式中的角有着特殊的关系,可以将所求角转化为公式中我们熟悉的角,进而利用诱导公式解决问题.
    例2 化简

    师生活动:学生选择合适的公式自行完成:
    解:原式

    追问2:总结解决此类问题的思想方法.
    师生活动:学生思考、总结:与第一课时利用诱导公式化简的方法一致,选择合适的公式,按照“负化正,大化小,化到锐角为终了”的步骤进行化简.
    例3 已知,且,求的值.
    师生活动:学生自行完成可能有困难,教师给予适当的引导:
    追问3:题目中已知为,所求为,它们中的两个角有关系吗?
    师生活动:学生发现,由此可转化为,就可以使用诱导公式解决问题了.
    解:因为,所以由诱导公式五,得

    因为,
    所以.
    由,得.
    所以,
    所以.
    追问4:总结解决此类问题的思想方法.
    师生活动:学生思考、总结:此类问题的解题关键是:发现所求角与已知角之间的特殊关系,将所求角用已知角表示,进而运用诱导公式解决问题.
    设计意图:三道例题,分别是证明、化简、求值.在三道例题的求解过程中,都要注意数学运算素养的培养.例1例2较为简单,重点放在恰当的选择公式上.例3的难点在于学生观察不到已知和所求中两个角的特殊关系,所以本例的重点是引导学生观察角之间的特殊关系上,意图渗透转化与化归的数学思想,最终形成解决一类问题的思维方法,渗透算法思想.
    问题5:回忆本节课的学习内容,回答下面的问题:
    (1) 探索诱导公式,我们经历了怎样的过程?用了哪些数学思想方法?
    (2) 公式一~公式六有怎样的结构?一般可以按怎样的顺序运用这些公式?
    (3) 诱导公式数量很多,你觉得用什么方法可以达到不仅有效记忆,而且能灵活运用的效果?
    师生活动:学生思考后进行交流,教师教师在学生回答的基础上进行适当归纳.
    (1) 诱导公式的探究过程可以归结为:
    单位圆的对称性→角与角的关系→对称点的坐标间的关系→三角函数值之间的关系.
    探究诱导公式的过程,使用了非常丰富的数学思想方法,如对称变换(包括中心对称,轴对称),坐标变换,数形结合的思想,转化与化归的思想,算法思想等.
    (2) 从变换的观点出发,公式一~公式六的结构可以这样来看:公式一~公式四是同名三角函数之间的变换,公式五、公式六是正弦函数与余弦函数之间的变换.诱导公式的运用顺序:是以将角的范围变到为目的,具体顺序为“负化正,大化小,化到锐角为终了”.
    (3) 公式的记忆建立在理解的基础上,要强调以单位圆为载体,数形结合地进行记忆.
    设计意图:从诱导公式所研究的问题、过程、方法和公式的整体架构以及涉及到的数学思想等角度进行梳理,并注意从不同视角进行分析和总结,从而达成对公式的结构化认识.
    目标检测设计
    1、用诱导公式求下列三角函数值.(1);(2);(3).
    答案:(1);
    (2);
    (3).
    2、证明:
    方法一:;
    方法二:
    3、求值:已知,且,求和的值.
    解:因为,,
    所以,

    又因为,所以,
    又因为,所以,
    所以,
    所以,

    设计意图:检测学生恰当选择公式进行三角函数化简、求值的掌握情况.
    布置作业:
    1.教科书P194练习2(1)(3)(4),3;
    2.教科书习题5.3第5,6,8,9,10题.
    相关教案

    人教A版 (2019)必修 第一册第五章 三角函数5.7 三角函数的应用精品第2课时教案设计: 这是一份人教A版 (2019)必修 第一册第五章 三角函数5.7 三角函数的应用精品第2课时教案设计,共6页。

    高中数学5.7 三角函数的应用优秀第1课时教案及反思: 这是一份高中数学5.7 三角函数的应用优秀第1课时教案及反思,共9页。教案主要包含了内容和及其解析,教学目标及解析,教学问题诊断分析等内容,欢迎下载使用。

    【小单元教案】高中数学人教A版(2019)必修第一册--5.6.2 函数y=Asin(wx b)的图象(第2课时)(课时教学设计): 这是一份【小单元教案】高中数学人教A版(2019)必修第一册--5.6.2 函数y=Asin(wx b)的图象(第2课时)(课时教学设计),共8页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【小单元教案】高中数学人教A版(2019)必修第一册--5.3.2 诱导公式的应用(第2课时)(课时教学设计)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map