终身会员
搜索
    上传资料 赚现金
    中考数学真题:2020浙江湖州
    立即下载
    加入资料篮
    中考数学真题:2020浙江湖州01
    中考数学真题:2020浙江湖州02
    中考数学真题:2020浙江湖州03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学真题:2020浙江湖州

    展开
    这是一份中考数学真题:2020浙江湖州,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年浙江省初中毕业学业考试(湖州市)
    卷Ⅰ
    一、选择题(本题有10小题,每小题3分,共30分)
    下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.
    1. 数4的算术平方根是(  )
    A. 2   B. -2   C. ±2   D.
    2. 近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约为991000亿元,则数991000用科学记数法可表示为(  )
    A. 991×103 B. 99.1×104
    C. 9.91×105 D. 9.91×106
    3. 已知某几何体的三视图如图所示,则该几何体可能是(  )

    第3题图

    4. 如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是(  )
    A. 70° B. 110° C. 130° D. 140°

    第4题图
    5. 数据-1,0,3,4,4的平均数是(  )
    A. 4 B. 3 C. 2.5 D. 2
    6. 已知关于x的一元二次方程x2+bx-1=0,则下列关于该方程根的判断,正确的是(  )
    A. 有两个不相等的实数根
    B. 有两个相等的实数根
    C. 没有实数根
    D. 实数根的个数与实数b的取值有关
    7. 四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′,若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是(  )
    A. 1 B. C. D.

    第7题图
    8. 已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是(  )
    A. y=x+2 B. y=x+2
    C. y=4x+2 D. y=x+2
    9. 如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO,以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.
    则下列结论中错误的是(  )
    A. DC=DT B. AD=DT
    C. BD=BO D. 2OC=5AC

    第9题图
    10. 七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是(  )
    A. 1和1 B. 1和2
    C. 2和1 D. 2和2

    第10题图
    卷Ⅱ
    二、填空题(本题有6小题,每小题4分,共24分)
    11. 计算:-2-1=________.
    12. 化简:=________.
    13. 如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10.则CD与AB之间的距离是_______.

    第13题图
    14. 在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如下表所示.
      第二次
    第一次  

    红Ⅰ
    红Ⅱ

    白,白
    白,红Ⅰ
    白,红Ⅱ
    红Ⅰ
    红Ⅰ,白
    红Ⅰ,红Ⅰ
    红Ⅰ,红Ⅱ
    红Ⅱ
    红Ⅱ,白
    红Ⅱ,红Ⅰ
    红Ⅱ,红Ⅱ
    则两次摸出的球都是红球的概率是________.
    15. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中,面积最大的三角形的斜边长是________.

    第15题图
    16. 如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连接CD.若△ACD的面积是2,则k的值是________.

    第16题图
    三、解答题(本题有8小题,共66分)
    17. (本小题6分)
    计算:+|-1|.

    18. (本小题6分)
    解不等式组


    19. (本小题6分)
    有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图,AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.
    (1)如图2-1,若AB=CD=110 cm,∠AOC=120°,求h的值;
    (2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120 cm时,两根支撑杆的夹角∠AOC是74°(如图2-2).求该熨烫台支撑杆AB的长度(结果精确到1 cm).
    (参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)

    第19题图




    20. (本小题8分)
    为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如下统计图(不完整).

    第20题图
    请根据图中信息解答下列问题:
    (1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)
    (2)求扇形统计图中表示“满意”的扇形的圆心角度数;
    (3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?




    21. (本小题8分)
    如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD,BC平分∠ABD.
    (1)求证:∠CAD=∠ABC;
    (2)若AD=6,求的长.

    第21题图









    22. (本小题10分)
    某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.
    (1)求甲、乙两个车间各有多少名工人参与生产?
    (2)为了提前完成生产任务,该企业设计了两种方案:
    方案一 甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.
    方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.
    设计的这两种方案,企业完成生产任务的时间相同.
    ①求乙车间需临时招聘的工人数;
    ②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.






    23. (本小题10分)
    已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
    (1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:AP=AC;
    (2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;
    (3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.

    第23题图












    24. (本小题12分)
    如图,已知在平面直角坐标系xOy中,抛物线y=-x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连接OA,OB,DA和DB.
    (1)如图1,当AC∥x轴时,
    ①已知点A的坐标是(-2,1),求抛物线的解析式;
    ②若四边形AOBD是平行四边形,求证:b2=4c.
    (2)如图2,若b=-2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.

    第24题图



    2020年浙江省初中毕业学业考试(湖州市)参考答案
    1. A 【解析】∵=2,∴4的算术平方根是2.
    2. C 【解析】将一个大数用科学记数法表示为a×10n的形式,其中1≤a<10,n是正整数,n为原数的整数位数减1或该大数变为a时小数点向左移动的位数,∴991000=9.91×105.
    3. A 【解析】由主视图和左视图,可排除C、D选项,由俯视图可排除B选项,故A选项符合题意.
    4. B 【解析】∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ABC=70°,∴∠ADC=180°-∠ABC=110°.
    5. D 【解析】x==2.
    6. A 【解析】由题意可得,b2-4ac=b2-4×1×(-1)=b2+4,∵b2≥0,∴b2+4>0,∴该一元二次方程有两个不相等的实数根.
    7. B 【解析】如解图,过点D′作D′E⊥AB于点E,设AB=a,由题意得AD′=AB=a,∵∠D′AB=30°,∠D′EA=90°,∴D′E=AD′=a,∴===.

    第7题解图
    8. C 【解析】在直线y=2x+2中,令y=0,则x=-1.在直线y=x+2中,令y=0,则x=-3.∴A(-1,0),B(-3,0).要使与x轴的交点不在线段AB上,即直线与x轴的交点不在-3与-1之间.经计算,A选项直线与x轴的交点为(-2,0),在线段AB上,不符合题意;B选项直线与x轴的交点为(-,0),在线段AB上,不符合题意;C选项直线与x轴的交点为(-,0),不在线段AB上,符合题意;D选项直线与x轴的交点为(-,0),在线段AB上,不符合题意.故选C.
    9. D 【解析】如解图,连接OD,∵∠AOB=90°,AO=BO,∴△ABO是等腰直角三角形.∵OT⊥AB,∴∠OTD=90°.∵CD是⊙O的切线,∴∠OCD=90°.∵OC=OT,OD=OD,∴Rt△OCD≌Rt△OTD(HL).∴DC=DT.故A选项正确;∵△ABO是等腰直角三角形,OT⊥AB,∴OT=AT,∠A=45°.∵∠ACD=90°,∴△ACD是等腰直角三角形.∴AD=CD.∵DC=DT,∴AD=DT.故B选项正确;∵OC=OT=BT,DC=DT,∴AO=AC+OC=DC+OC=DT+BT=BD.∵AO=BO,∴BD=BO.故C选项正确;设AC=DT=x,∵AD=DT,∴OC=OT=AT=(+1)x.∴2OC=(2+2)x,5AC=5x,由2OC≠5AC,故D选项错误.

    第9题解图
    10. D 【解析】如解图①②为中国七巧板拼成的平行四边形和矩形,如解图③④为日本七巧板拼成的平行四边形和矩形,故选D.

    第10题解图
    11. -3 【解析】-2-1=-3.
    12.  【解析】原式==.

    13. 3 【解析】如解图,连接OC,过点O作OE⊥CD于点E.∵CD∥AB,OE⊥CD,∴CE=CD=4.∵AB=10,∴OC=OA=5.在Rt△OEC中,由勾股定理得,OE===3,则CD与AB之间的距离是3.

    第13题解图
    14.  【解析】由表可知,共有9种等可能的情况,其中两次摸出的球都是红球的情况有4种,∴P(两次摸出的球都是红球)=.
    15. 5 【解析】如解图,Rt△BDE∽Rt△BCA,且面积最大.此时斜边BE==5.

    第15题解图
    16.  【解析】如解图,过点C作CE⊥AB于点E.设D(a,),∵点C是OA的中点,∴C(,),E(a,),A(a,).则S△ACD=·AD·CE=·(-)·=2,解得k=.

    第16题解图
    17. 解:原式=2+(-1)
    =2+-1
    =3-1.
    18. 解:解不等式①,得x<1.
    解不等式②,得x<-6.
    所以原不等式组的解是x<-6.
    19. 解:(1)过点B作BE⊥AC于点E,如图2-1.
    ∵OA=OC,∠AOC=120°,
    ∴∠OAC=∠OCA==30°.
    ∴h=BE=AB·sin30°=110×=55(cm).
    (2)过点B作BE⊥AC于点E,如图2-2.
    ∵OA=OC,∠AOC=74°,
    ∴∠OAC=∠OCA==53°.
    ∴AB=BE÷sin53°≈120÷0.8=150(cm).
    即该熨烫台支撑杆AB的长度约为150 cm.

    图2-1
     
    图2-2
    第19题解图
    20. 解:(1)被抽查的学生人数是20÷40%=50(人).
    ∵50-20-15-1=14(人).
    ∴补全的条形统计图如解图所示.
    被抽查的学生网上在线学习效果满意度
    条形统计图

    第20题解图
    (2)扇形统计图中表示“满意”的扇形的圆心角度数是360°×=108°
    (3)∵1000×(+)=700(人).
    ∴估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有700人.
    21. (1)证明:∵BC平分∠ABD,
    ∴∠DBC=∠ABC.
    ∵∠CAD=∠DBC,
    ∴∠CAD=∠ABC.
    (2)解:由(1)知∠CAD=∠ABC,
    ∴==.
    ∵AD是⊙O的直径,AD=6,
    ∴==××π×6=π.
    22. 解:(1)设甲车间有x名工人参与生产,乙车间有y名工人参与生产.
    由题意,得
    解得
    答:甲车间有30名工人参与生产,乙车间有20名工人参与生产.
    (2)①设方案二中乙车间需临时招聘m名工人.
    由题意,得=

    解得m=5,
    经检验,m=5是原方程的解,且符合题意.
    答:乙车间需临时招聘的工人数为5人.
    ②企业完成生产任务所需的时间为
    =18(天).
    ∴选择方案一需增加的费用为900×18+1500=17700(元).
    选择方案二需增加的费用为5×18×200=18000(元).
    ∵17700<18000,∴选择方案一能更节省开支.
    23. (1)证明:∵AC=BC,∠C=60°,
    ∴△ABC是等边三角形,
    ∴AC=AB,∠A=60°,
    由题意,得DB=DP,DA=DB,
    ∴DA=DP,∴△ADP是等边三角形.
    ∴AP=AD=AB=AC.
    (2)解:∵AC=BC=6,∠C=90°,
    ∴AB==12.
    ∵DH⊥AC,∴DH∥BC,
    ∴△ADH∽△ABC,∴=,
    ∵AD=7,∴=,解得DH=.
    在Rt△ADH中,AH=DH=,
    将∠B沿着过点D的直线折叠,
    情况一:当点B落在线段CH上的点P1处时,如解图1.


    第23题解图1
    ∵AB=12,
    ∴DP1=DB=AB-AD=5,
    ∴HP1==,
    ∴AP1=AH+HP1=4;
    情况二:当点B落在线段AH上的点P2处时,如解图2.


    第23题解图2
    同理可得HP2=,
    ∴AP2=AH-HP2=3.
    综上所述,AP的长为4或3.
    (3)6<a<.
    24. (1)①解:∵AC∥x轴,点A的坐标是(-2,1),
    ∴点C的坐标是(0,1).
    把点A(-2,1),C(0,1)的坐标分别代入y=-x2+bx+c,
    得解得
    ∴抛物线的解析式为y=-x2-2x+1.
    ②证明:过点D作DE⊥x轴于点E,交AB于点F,如解图1.

    第24题解图1
    ∵AC∥x轴,∴EF=OC=c,
    又∵点D的坐标是(,c+),
    ∴DF=DE-EF=(c+)-c=.
    ∵四边形AOBD是平行四边形,
    ∴AD=BO,AD∥OB,
    ∴∠DAF=∠OBC.
    又∵∠AFD=∠BCO=90°,
    ∴△AFD≌△BCO(AAS),∴DF=OC.
    ∴=c,即b2=4c.
    (2)解:由题意,得抛物线的解析式为y=-x2-2x+c,
    ∴顶点D的坐标是(-1,c+1),

    第24题解图2
    假设存在这样的点A,使四边形AOBD是平行四边形,如解图2.
    设点A的坐标是(m,-m2-2m+c),m<0.
    过点D作DE⊥x轴于点E,交AB于点F,
    则∠AFD=∠EFC=∠BCO.
    ∵四边形AOBD是平行四边形,
    ∴AD=BO,AD∥OB,∴∠DAF=∠OBC.
    ∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC.过点A作AM⊥y轴于点M,交DE于点N,
    则DE∥CO,∴△ANF∽△AMC,
    ∴====.
    ∵AM=-m,AN=AM-NM=-m-1,
    ∴=,解得m=-.
    ∴点A的纵坐标是-(-)2-2×(-)+c=c-<c.
    ∵AM∥x轴,∴点M的坐标是(0,c-),点N的坐标是(-1,c-).
    ∴CM=c-(c-)=.
    ∵点D的坐标是(-1,c+1),∴DN=(c+1)-(c-)=.
    ∵DF=OC=c,∴FN=DN-DF=-c.
    由=,得=,解得c=.∴c-=.
    ∴点A的纵坐标是.
    ∴点A的坐标是(-,).
    ∴存在这样的点A,使四边形AOBD是平行四边形,且A点的坐标为(-,).

    相关试卷

    2017浙江省湖州市中考数学真题及答案: 这是一份2017浙江省湖州市中考数学真题及答案,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    中考数学真题:2021浙江湖州: 这是一份中考数学真题:2021浙江湖州,共15页。试卷主要包含了 参考公式等内容,欢迎下载使用。

    中考数学真题:2019浙江湖州: 这是一份中考数学真题:2019浙江湖州,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map