所属成套资源:2023-2024学年八年级数学上册精选专题培优讲与练(人教版)
- 培优专题05 全等三角形十大模型之平移和轴对称模型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版) 试卷 5 次下载
- 培优专题06 全等三角形十大模型之旋转和一线三等角模型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版) 试卷 5 次下载
- 培优专题08 全等三角形十大模型之截长补短和手拉手模型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版) 试卷 5 次下载
- 培优专题09 全等三角形十大模型之角平分线和半角模型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版) 试卷 5 次下载
- 培优专题10 等腰三角形的性质与判定-2023-2024学年八年级数学上册精选专题培优讲与练(人教版) 试卷 5 次下载
培优专题07 全等三角形十大模型之三垂直和倍长中线模型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版)
展开这是一份培优专题07 全等三角形十大模型之三垂直和倍长中线模型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版),文件包含培优专题07全等三角形十大模型之三垂直和倍长中线模型-原卷版docx、培优专题07全等三角形十大模型之三垂直和倍长中线模型-解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
培优专题07 全等三角形的十大模型之
三垂直和倍长中线模型
◎模型五:三垂直全等模型
【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。
【常见模型】
1.(2022·青海西宁·八年级期末)如图,直线上有三个正方形,若,的面积分别为5和11,则的面积为( )
A.13 B.16 C.36 D.55
【答案】B
【分析】根据正方形的性质,易证,可得,,根据,的面积以及勾股定理即可求出的面积.
【详解】解:如图:
根据题意,得,,
,,
,
在和中,
,
,
,,
,的面积分别为5和11,
,,
,
根据勾股定理,得,
的面积为16,
故选:B.
【点睛】本题考查了全等三角形的判定和性质,涉及正方形的性质,勾股定理等,熟练掌握全等三角形的判定方法是解题的关键.
2.(2021·辽宁·大石桥市周家镇中学八年级阶段练习)如下图所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=6cm,AD=9cm,则BE的长是( )
A.6cm B.1.5cm C.3cm D.4.5cm
【答案】C
【分析】本题可通过全等三角形来求BE的长.△BEC和△CDA中,已知了一组直角,∠CBE和∠ACD同为∠BCE的余角,AC=BC,可据此判定两三角形全等;那么可得出的条件为CE=AD,BE=CD,因此只需求出CD的长即可.而CD的长可根据CE即AD的长和DE的长得出,由此可得解.
【详解】解:∵∠ACB=90°,BE⊥CE,
∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;
∴∠ACD=∠CBE,又AC=BC,
∴△ACD≌△CBE;
∴EC=AD,BE=DC;
∵DE=6cm,AD=9cm,则BE的长是3cm.
故选C.
【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
3.(2022·全国·八年级课时练习)如图,中,,则点B的坐标为________.
【答案】(4,1)
【分析】如图,过点B作BD⊥x轴于D,根据点A、点C坐标可得OA、OC的长,根据同角的余角相等可得∠OAC=∠DCB,利用AAS可证明△OAC≌△DCB,根据全等三角形的性质可得BD=OC,CD=OA,即可求出OD的长,进而可得答案.
【详解】如图,过点B作BD⊥x轴于D,
∵A(0,3),C(1,0),
∴OA=3,OC=1,
∵∠ACB=90°,
∴∠OCA+∠DCB=90°,
∵∠OAC+∠OCA=90°,
∴∠OAC=∠DCB,
在△OAC和△DCB中,,
∴△OAC≌△DCB,
∴BD=OC=1,CD=OA=3,
∴OD=OC+CD=4,
∴点B坐标为(4,1).
故答案为:(4,1)
【点睛】本题考查坐标与图形及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.
4.(2020·河北唐山·八年级期中)已知:如图,AE⊥AB,且AE=AB,BC⊥CD且BC=CD,根据图中所标注的数据,可求得阴影部分的面积为_______.
【答案】50
【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF,同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.
【详解】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH,
∴∠EAB=∠EFA=∠BGA=90°,
∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°,
∴∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG,
∴△EFA≌△ABG(AAS),
∴AF=BG,AG=EF
同理证得:△BGC≌△DHC(AAS),得GC=DH,CH=BG
故FH=FA+AG+GC+CH=3+6+4+3=16,
故,
即:S(6+4)×16﹣3×4﹣6×3=50.
故答案为:50.
【点睛】此题考查了全等三角形的判定与性质、等腰直角三角形的性质,熟练掌握相关基本性质是解题的关键.
5.(2021·河南商丘·八年级期中)在平面直角坐标系中,点的坐标为,点为轴正半轴上的一个动点,以为直角顶点,为直角边在第一象限作等腰Rt.
(1)如图1,若,则点的坐标为______;
(2)如图2,若,点为延长线上一点,以为直角顶点,为直角边在第一象限作等腰Rt,连接,求证:;
(3)如图3,以为直角顶点,为直角边在第三象限作等腰Rt.连接,交轴于点,求线段的长度.
【答案】(1)点C(3,7);
(2)证明见详解过程;
(3)2.
【分析】(1)如图1,过点C作CH⊥y轴,由“AAS”可证△ABO≌△BCH,可得CH=OB=3,BH=AO=4,可求解;
(2)过点E作EF⊥x轴于F,由“AAS”可证△ABO≌△BCH,可得BO=DF=4,OD=EF,由等腰直角三角形的性质可得∠BAO=45°,∠EAF=∠AEF=45°,可得结论;
(3)由(1)可知△ABO≌△BCG,可得BO=GC,AO=BG=4,再由“AAS”可证△CPG≌△FPB,可得PB=PG=2.
(1)
如图1,过点C作CH⊥y轴于H,
∴∠CHB=∠ABC=∠AOB=90°,
∴∠BCH+∠HBC=90°=∠HBC+∠ABO,
∴∠ABO=∠BCH,
在△ABO和△BCH中,
,
∴△ABO≌△BCH(AAS),
∴CH=OB=3,BH=AO=4,
∴OH=7,
∴点C(3,7),
故答案为:(3,7);
(2)
过点E作EF⊥x轴于F,
∴∠EFD=∠BDE=∠BOD=90°,
∴∠BDO+∠EDF=90°=∠BDO+∠DBO,
∴∠DBO=∠EDF,
在△BOD和△DFE中,
,
∴△BOD≌△DFE(AAS),
∴BO=DF=4,OD=EF,
∵点A的坐标为(4,0),
∴OA=OB=4,
∴∠BAO=45°,
∵OA=DF=4,
∴OD=AF=EF,
∴∠EAF=∠AEF=45°,
∴∠BAE=90°,
∴BA⊥AE;
(3)
过点C作CG⊥y轴G,
由(1)可知:△ABO≌△BCG,
∴BO=GC,AO=BG=4,
∵BF=BO,∠OBF=90°,
∴BF=GC,∠CGP=∠FBP=90°,
又∵∠CPG=∠FPB,
∴△CPG≌△FPB(AAS),
∴BP=GP,
∴BP=BG=2.
【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,添加恰当辅助线构造直角三角形是本题的关键.
◎模型六:倍长中线模型
【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
【常见模型】
6.(2021·甘肃兰州·模拟预测)如图,在△ABC中,AB=4,AC=2,点D为BC的中点,则AD的长可能是( )
A.1 B.2 C.3 D.4
【答案】B
【分析】延长AD到E,使DE=AD,连接BE.证△ADC≌△EDB(SAS),可得BE=AC=2,再利用三角形的三边关系求出AE的范围即可解决问题.
【详解】解:延长AD到E,使DE=AD,连接BE,
在△ADC和△EDB中,
,
∴△ADC≌△EDB(SAS),
∴BE=AC=2,
在△ABE中,AB﹣BE<AE<AB+BE,
即2<2AD<6,
解得1<AD<3,
故选:B.
【点睛】本题考查了三角形的全等判定和性质,三角形三边关系定理,熟练证明三角形的全等是解题的关键.
7.(2021·湖南·张家界市民族中学八年级期中)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
【答案】A
【分析】取CG的中点H,连接EH,根据三角形的中位线定理可得EH//AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.
【详解】解:如图,取CG的中点H,连接EH,
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH//AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中,
,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
∴S△CEF=3S△EFH,
∴S△CEF=3S△DGF,
∴S△DGF=×12=4(cm2).
故选:A.
【点睛】本题主要考查了三角形中位线定理、全等三角形的判定与性质、平行线性质.利用倍长类中线构造全等三角形转换面积和线段关系是解题关键.
8.(2022·全国·八年级课时练习)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则点A到直线CD的距离是_____.
【答案】4
【分析】根据垂直的定义得到∠BCD=,延长CD到H使DH=CD,由线段中点的定义得到 AD=BD ,根据全等三角形的性质得到 AH=BC=4.
【详解】∵ DC⊥BC,
∴ ∠BCD=,
∵ ∠ACB=,
∴ ∠ACD=,
如图,延长 CD 到 H 使 DH=CD ,
∵ D 为 AB 的中点,
∴ AD=BD,
在 ΔADH 与 ΔBCD 中,
,
∴ ΔADH≅ΔBCD(SAS),
∴ AH=BC=4,∠AHD=∠BCD=90°,
∴点A到CD的距离为4,
故答案为:4.
【点睛】本题考察全等三角形的判定与性质,正确作出辅助线是解题的关键.
9.(2022·全国·八年级专题练习)如图,中,为的中点,是上一点,连接并延长交于,,且,,那么的长度为__.
【答案】;
【分析】延长至使,连接,得出,得出,所以得出是等腰三角形,根据已知线段长度建立等量关系计算.
【详解】
如图:延长至使,连接
在和中:
∴
∴
∵
∴
∴
∵
∴
∴
∴
即
∴
【点睛】倍长中线是常见的辅助线、全等中相关的角的代换是解决本题的关键.
10.(2022·全国·八年级专题练习)数学兴趣小组在活动时,老师提出了这样一个问题:
如图1,在中,,,D是BC的中点,求BC边上的中线AD的取值范围.
【阅读理解】
小明在组内经过合作交流,得到了如下的解决方法:
(1)如图1,延长AD到E点,使,连接BE. 根据______可以判定 ______,得出______.
这样就能把线段AB、AC、集中在中.利用三角形三边的关系,即可得出中线AD的取值范围是.
【方法感悟】
当条件中出现“中点”、“中线”等条件时,可以考虑做“辅助线”——把中线延长一倍,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中,这种做辅助线的方法称为“中线加倍”法.
【问题解决】
(2)如图2,在中,,D是BC边的中点,,DE交AB于点E,DF交AC于点F,连接EF,求证:.
【问题拓展】
(3)如图3,中,,,AD是的中线,,,且.直接写出AE的长=______.
【答案】(1);;;;(2)见解析;(3)8.
【分析】(1)根据三角形全等的判定方法和全等三角形的性质以及三角形三边的关系求解即可;
(2)延长ED使DG=ED,连接FG,GC,根据垂直平分线的性质得到,然后利用SAS证明,得到,,进而得到,最后根据勾股定理证明即可;
(3)延长AD交EC的延长线于点F,根据ASA证明,然后根据垂直平分线的性质得到,最后根据全等三角形的性质求解即可.
【详解】解:(1)在和中,
∴,
∴.
∵,
∴,即,
∴,
∴,
解得:;
故答案为:;;;;
(2)如图所示,延长ED使DG=ED,连接FG,GC,
∵,
∴,
在和中,
∴,
∴,,
∴,
∴,
∴在中,,
∴;
(3)如图所示,延长AD交EC的延长线于点F,
∵,
,
在和中,
,
∴,,
∵,
∴,
∵,
∴.
【点睛】此题考查了全等三角形的性质和判定方法,三角形的三边关系,“中线加倍”法的运用,解题的关键是根据题意作出辅助线构造全等三角形.
相关试卷
这是一份倍长中线模型的培优综合---中考数学专题,文件包含倍长中线模型的培优综合解析版pdf、倍长中线模型的培优综合学生版pdf等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题07 全等三角形中的倍长中线模型 (全国通用),文件包含专题07全等三角形中的倍长中线模型原卷版docx、专题07全等三角形中的倍长中线模型解析版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份培优专题09 全等三角形十大模型之角平分线和半角模型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版),文件包含培优专题09全等三角形十大模型之角平分线和半角模型-原卷版docx、培优专题09全等三角形十大模型之角平分线和半角模型-解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。