四川省蓬安县2022-2023学年数学七下期末质量跟踪监视模拟试题含答案
展开四川省蓬安县2022-2023学年数学七下期末质量跟踪监视模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列说法错误的是( )
A.“买一张彩票中大奖”是随机事件
B.不可能事件和必然事件都是确定事件
C.“穿十条马路连遇十次红灯”是不可能事件
D.“太阳东升西落”是必然事件
2.式子在实数范围内有意义,则x的取值范围是( )
A.x<1 B.x≥1 C.x≤﹣1 D.x<﹣1
3.下列所叙述的图形中,全等的两个三角形是( )
A.含有45°角的两个直角三角形 B.腰相等的两个等腰三角形
C.边长相等的两个等边三角形 D.一个钝角对应相等的两个等腰三角形
4.关于一次函数,下列结论正确的是
A.图象经过 B.图象经过第一、二、三象限
C.y随x的增大而增大 D.图象与y轴交于点
5.如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是( )
A. B. C.且 D.或
6.下列说法不正确的是( )
A.有两组对边分别平行的四边形是平行四边形
B.平行四边形的对角线互相平分
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
7.据统计,湘湖景区跨湖桥遗址参观人数2016年为10.8万人次,2018年为16.8万人次,设该景点年参观人次的年平均增长率为x,则可列方程( )
A.10.8(1+x)=16.8 B.10.8(1+2x)=16.8
C.10.8(1+x)=16.8 D.10.8[(1+x)+(1+x)]=16.8
8.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于( )
A.20 B.18 C.16 D.14
9.如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )
A.(-8,0) B.(0,8)
C.(0,8) D.(0,16)
10.如图,将绕点按顺时针旋转一定角度得到,点的对应点恰好落在边上.若,,则的长为( )
A.1 B. C.2 D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC =2,∠DAO =300,则FB的长度为________ .
12.已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D为顶点的四边形是平行四边形,则D点的坐标为___________________.
13.如图,在四边形ABCD中,AD//BC,E、F分别是AB、CD的中点,若AD=3,BC=5,则EF=____________.
14.如图,含45°角的直角三角板DBC的直角顶点D在∠BAC的角平分线AD上,DF⊥AB于F,DG⊥AC于G,将△DBC沿BC翻转,D的对应点落在E点处,当∠BAC=90°,AB=4,AC=3时,△ACE的面积等于_____.
15.观察分析下列数据:,则第17个数据是 _______ .
16.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
三、解下列各题(本大题共8小题,共72分)
17.(8分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.
18.(8分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技创新活动,小明家、小刚家、科技馆在一条直线上.已知小明到达科技馆花了20分钟.设两人出发(分钟)后,小明离小刚家的距离为(米),与的函数关系如图所示.
(1)小明的速度为 米/分, ,小明家离科技馆的距离为 米;
(2)已知小刚的步行速度是40米/分,设小刚步行时与家的距离为(米),请求出与之间的函数关系式,并在图中画出 (米)与 (分钟)之间的函数关系图象;
(3)小刚出发几分钟后两人在途中相遇?
19.(8分)阅读下列材料解决问题
两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.
(1)下列说法错误的是
A.123和51互为调和数” B.345和513互为“调和数
C.2018和8120互为“调和数” D.两位数和互为“调和数”
(2)若A、B是两个不等的两位数,A=,B=,A和B互为“调和数”,且A与B之和是B与A之差的3倍,求满足条件的两位数A.
20.(8分)如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F分别为AB,AD边上的动点,满足,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC; ③若BE=3,则BM=MN=DN;④; ⑤△ECF面积的最小值为.其中所有正确结论的序号是______
21.(8分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.
(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;
(2)如图1,猜想AG与BE的位置关系,并加以证明;
(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.
22.(10分)(知识链接)连结三角形两边中点的线段,叫做三角形的中位线.
(动手操作)小明同学在探究证明中位线性质定理时,是沿着中位线将三角形剪开然后将它们无缝隙、无重叠的拼在一起构成平行四边形,从而得出:三角形中位线平行于第三边且等于第三边的一半.
(性质证明)小明为证明定理,他想利用三角形全等、平行四边形的性质来证明.请你帮他完成解题过程(要求:画出图形,根据图形写出已知、求证和证明过程).
23.(10分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
(1)求出三点的坐标.
(2)求直线的函数表达式.
(3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
24.(12分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、D
5、D
6、D
7、C
8、A
9、D
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、2
12、 (5,2),(-3,6),(1,-2) .
13、1
14、
15、
16、1
三、解下列各题(本大题共8小题,共72分)
17、(1)见解析;(2)70°.
18、(1)60;960;1200;(2)=40(0≤≤24);见解析;(3)12分钟.
19、(1)B(2)18
20、①②③⑤
21、(1)证明见解析(2)AG⊥BE(3)证明见解析
22、见解析
23、(1),,;(2);(3)存在,,,.
24、20,1
河南周口港区2022-2023学年数学七下期末质量跟踪监视模拟试题含答案: 这是一份河南周口港区2022-2023学年数学七下期末质量跟踪监视模拟试题含答案,共6页。
2022-2023学年黄冈中学数学七下期末质量跟踪监视模拟试题含答案: 这是一份2022-2023学年黄冈中学数学七下期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列各式中,最简二次根式为等内容,欢迎下载使用。
2022-2023学年扬州地区部分县七下数学期末质量跟踪监视模拟试题含答案: 这是一份2022-2023学年扬州地区部分县七下数学期末质量跟踪监视模拟试题含答案,共6页。