山东省龙口市兰高镇兰高校2022-2023学年七下数学期末经典试题含答案
展开
这是一份山东省龙口市兰高镇兰高校2022-2023学年七下数学期末经典试题含答案,共8页。
山东省龙口市兰高镇兰高校2022-2023学年七下数学期末经典试题(时间:120分钟 分数:120分) 学校_______ 年级_______ 姓名_______ 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(每小题3分,共30分)1.下列式子:①;②;③;④.其中是的函数的个数是( )A.1 B.2 C.3 D.42.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是( )A.45.2分钟 B.48分钟 C.46分钟 D.33分钟3.只用下列图形不.能.进行平面镶嵌的是( )A.全等的三角形 B.全等的四边形C.全等的正五边形 D.全等的正六边形4.将一幅三角板如图所示摆放,若,那么∠1的度数为()(提示:延长EF或DF)A.45° B.60° C.75° D.80°5.下列四组线段中,可以构成直角三角形的是( )A.2、3、4 B.、2、 C.3、4、5 D.5、6、76.学校测量了全校800名男生的身高,并进行了分组,已知身高在1.70~1.75(单位:m)这一组的频率为0.25,则该组共有男生( )A.100名 B.200名 C.250名 D.400名7.已知平行四边形中,一个内角,那么它的邻角( ).A. B. C. D.8.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为( )A.1 B.1.5 C.2 D.2.59.已知关于x的一元二次方程2x2﹣mx﹣4=0的一个根为m,则m的值是( )A.2 B.﹣2 C.2或﹣2 D.任意实数10.如图,正方形的边长是4,在上,且,是边上的一动点,则周长的最小值是( )A.3 B.4 C.5 D.6二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,在中,,交于点,,若,则__________.12.数据2,0,1,9,0,6,1,6的中位数是______.13.已知一次函数的图象经过第一、二、四象限,则的取值范围是_____.14.一次函数图象过点日与直线平行,则一次函数解析式__________.15.在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.16.如图,在中,,,,过点作且点在点的右侧.点从点出发沿射线方向以/秒的速度运动,同时点从点出发沿射线方向以/秒的速度运动,在线段上取点,使得,设点的运动时间为秒.当__________秒时,以,,,为顶点的四边形是平行四边形.三、解下列各题(本大题共8小题,共72分)17.(8分)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么? 18.(8分)阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).阅读时间分组统计表组别阅读时间x(h)人数A0≤x<10aB10≤x<20100C20≤x<30bD30≤x<40140Ex≥40c请结合以上信息解答下列问题:(1)求a,b,c的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比. 19.(8分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点. (1)求线段的长度; (2)求直线所对应的函数表达式; (3)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由. 20.(8分)如图,已知点A的坐标为(a,4)(其中a<-3),射线OA与反比例函数的图象交于点P,点B,C分别在函数的图象上,且AB∥x轴,AC∥y轴,连结BO,CO,BP,CP.(1)当a=-6,求线段AC的长;(2)当AB=BO时,求点A的坐标;(3)求证:. 21.(8分)已知点E、F分别是四边形ABCD边AB、AD上的点,且DE与CF相交于点G.(1)如图①,若AB∥CD,AB=CD,∠A=90°,且AD•DF=AE•DC,求证:DE⊥CF:(2)如图②,若AB∥CD,AB=CD,且∠A=∠EGC时,求证:DE•CD=CF•DA:(3)如图③,若BA=BC=3,DA=DC=4,设DE⊥CF,当∠BAD=90°时,试判断是否为定值,并证明. 22.(10分)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1. 23.(10分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T. 24.(12分)已知:关于x的一元二次方程ax2﹣2(a﹣1)x+a﹣2=0(a>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2•x1,求这个函数的表达式;(3)将(2)中所得的函数的图象在直线a=2的左侧部分沿直线a=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象直接写出:当关于a的函数y=2a+b的图象与此图象有两个公共点时,b的取值范围是 . 参考答案 一、选择题(每小题3分,共30分)1、C2、A3、C4、C5、C6、B7、C8、B9、C10、D 二、填空题(本大题共有6小题,每小题3分,共18分)11、112、1.213、14、15、16、或14 三、解下列各题(本大题共8小题,共72分)17、 (1)见解析;(2)平行四边形MENF是菱形,见解析;(3)即当AD:AB=2:1时,四边形MENF是正方形,理由见解析.18、 (1)20,200,40;(2)补全图形见解析;(3) 24%.19、(1)15;(2);(3)20、(1);(2);(3)见解析21、(1)证明见解析 (2)证明见解析 (3)答案见解析22、(x﹣1)2+3;8.23、(1)见解析;(2),见解析;(3),,(元).24、(1)见解析;(2)y=a﹣1(a>0);(1)﹣11<b<﹣2
相关试卷
这是一份山东省龙口市兰高镇兰高校2023-2024学年九上数学期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,,则的值为等内容,欢迎下载使用。
这是一份山东省龙口市兰高镇兰高校2023-2024学年数学九上期末质量检测模拟试题含答案,共7页。试卷主要包含了下列事件中是必然发生的事件是等内容,欢迎下载使用。
这是一份山东省龙口市兰高镇兰高校2023-2024学年数学八上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了下列计算结果为的是,的平方根与-8的立方根之和是,下面计算正确的是等内容,欢迎下载使用。