北京市大兴区名校2022-2023学年数学七下期末学业水平测试试题含答案
展开北京市大兴区名校2022-2023学年数学七下期末学业水平测试试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.数据60,70,40,30这四个数的平均数是( )
A.40 B.50 C.60 D.70
2.如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画( )
A.2个 B.3个 C.4个 D.5个
3.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )
A. B. C. D.
4.下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2 B.a2+a+1=(a+1)2
C.xy﹣x=x(y﹣1) D.2x+y=2(x+y)
5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
A. B. C. D.
6.下列函数解析式中不是一次函数的是( )
A. B. C. D.
7.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为( )
A.60 B.16 C.30 D.11
8.如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于( )
A.135° B.180° C.225° D.270°
9.为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和众数分别是( )
A.11,11 B.12,11 C.13,11 D.13,16
10.如表记录了甲、乙、丙、丁四名学生最近几次数学综合测试成绩的平均数与方差:
根据表中数据,要从中选择一名成好且发挥稳定的同学参加竟赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
11.已知的三边,,满足,则的面积为( )
A. B. C. D.
12.的值等于
A.3 B. C. D.
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2,当|x1|+|x2|=7时,那么k的值是__.
14.如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=__.
15.如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.
16.在平行四边形ABCD中,AD=13,BAD和ADC的角平分线分别交BC于E,F,且EF=6,则平行四边形的周长是____________________
17.若,是一元二次方程的两个根,则的值是_________.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图,直线l 在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.
(1)求点C的坐标和直线l的解析式
(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;
(3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
19.(5分)如图,在矩形纸片中,,.将矩形纸片折叠,使点与点重合,求折痕的长.
20.(8分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.
(1)求购买一个甲种足球、一个乙种足球各需多少元?
(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?
21.(10分)如图,已知A、B两艘船同时从港口Q出发,船A以40km/h的速度向东航行;船B以30km/h的速度向北航行,它们离开港口2h后相距多远?
22.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.的三个顶点都在格点上,将绕点按顺时针方向旋转得到.
(1)在正方形网格中,画出;
(2)画出向左平移4格后的;
(3)计算线段在变换到的过程中扫过区域的面积.
23.(12分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成. 将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,. 若, 则正方形EFGH的面积为_______.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、B
2、D
3、D
4、C
5、C
6、C
7、C
8、C
9、D
10、A
11、B
12、A
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、﹣1.
14、4
15、4
16、41或33.
17、6
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)(-2,1),y=-2x-3(2)点D在直线l上,理由见解析(3)13.5
19、.
20、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.
21、它们离开港口2h后相距100km.
22、(1)见解析;(2)见解析;(3).
23、1
2022-2023学年重庆市江津区名校数学七下期末学业水平测试试题含答案: 这是一份2022-2023学年重庆市江津区名校数学七下期末学业水平测试试题含答案,共6页。试卷主要包含了用配方法解方程,经过配方,得到,如图所示的图象反映的过程是,函数y=3x﹣1的图象不经过等内容,欢迎下载使用。
北京市大兴区2022-2023学年数学七下期末检测试题含答案: 这是一份北京市大兴区2022-2023学年数学七下期末检测试题含答案,共8页。试卷主要包含了已知,则等于,使代数式有意义的x的取值范围是等内容,欢迎下载使用。
2022-2023学年江苏省淮安市名校数学七下期末学业水平测试模拟试题含答案: 这是一份2022-2023学年江苏省淮安市名校数学七下期末学业水平测试模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,如图,过点A0,抛物线的顶点坐标是等内容,欢迎下载使用。