专题25.1 概率初步(基础)-【题型分层练】2022-2023学年九年级数学上册单元题型精练(基础题型+强化题型)(人教版)
展开TOC \ "1-3" \h \z \u \l "_Tc117806113" 事件概念的识别与判定 PAGEREF _Tc117806113 \h 1
\l "_Tc117806114" 概率的意义 PAGEREF _Tc117806114 \h 2
\l "_Tc117806115" 用古典概率求随机事件的概率 PAGEREF _Tc117806115 \h 3
\l "_Tc117806116" 用几何概率求随机事件的概率 PAGEREF _Tc117806116 \h 4
\l "_Tc117806117" 与其它知识点的综合 PAGEREF _Tc117806117 \h 5
\l "_Tc117806118" 两步实验的概率 PAGEREF _Tc117806118 \h 7
\l "_Tc117806119" 概率综合运用 PAGEREF _Tc117806119 \h 8
\l "_Tc117806120" 游戏的公平性 PAGEREF _Tc117806120 \h 12
\l "_Tc117806121" 三步实验的概率 PAGEREF _Tc117806121 \h 16
\l "_Tc117806122" 频率与概率之间的关系 PAGEREF _Tc117806122 \h 18
\l "_Tc117806123" 用频率估计概率 PAGEREF _Tc117806123 \h 21
事件概念的识别与判定
1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.
2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.
3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件)
下列事件是必然事件的是
A.下个月1号会下雨
B.从一副扑克牌中随机抽取一张,抽到红桃
C.平分弦的直径垂直于弦
D.13个人中至少有2人生日在同一个月
下列判断正确的是
A.天气预报说“明天的降水概率为”,则表示明天有的时间都在降雨
B.掷一枚硬币正面朝上的概率为,则表明掷硬币8次,一定有4次正面朝上
C.“篮球队员在罚球线上投篮一次,投中”为必然事件
D.若是实数,则
下列事件是随机事件的是
A.画一个三角形,其内角和是
B.在只装了红球的不透明袋子里摸出一个球,是红球
C.一个菱形的对角线互相垂直
D.同位角相等
下列事件中,属于不可能事件的是
A.是实数,则
B.一匹马奔跑的速度是每秒100米
C.任意一个三角形都有外接圆
D.抛掷一枚骰子,朝上面的点数是6
概率的意义
事件发生的可能性
(1)必然事件发生的可能性是1(或100%);
因为必然事件一定发生,所以其可能性为100%,一般用1表示.
(2)不可能事件发生的可能性是0;
因为不可能事件一定不发生,所以其发生的可能性为0.
(3)不确定事件发生的可能性大于0且小于1;
因为不确定事件有可能发生,也有可能不发生。
天气预报显示“上海明天下雨的概率为”.下列说法中,正确的是
A.上海明天将有的时间下雨
B.上海明天将有的地区下雨
C.上海明天下雨的可能性很大
D.上海明天下雨的可能性很小
关于“明天是晴天的概率为”,下列说法正确的是
A.明天一定是晴天B.明天一定不是晴天
C.明天的地方是晴天D.明天是晴天的可能性很大
已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是
A.通过抛一枚均匀硬币确定篮球赛中谁先发球是公平的
B.大量重复抛一枚均匀硬币,出现正面朝上的频率稳定于
C.连续抛一枚均匀硬币10次可能都是正面朝上
D.连续抛一枚均匀硬币2次必有1次正面朝上
下列说法正确的是
A.某同学连续投掷一枚质地均匀的硬币5次,有3次正面朝上,因此正面朝上的概率为
B.50个人中一定有两人生日相同
C.甲、乙射击命中目标的概率分别是和,则甲、乙各射击一次命中目标的概率为
D.13个人中有两个人生肖相同的概率为1
用古典概率求随机事件的概率
一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为.
任意抛掷一枚均匀的骰子,结果朝上一面的点数为2的倍数的概率是
A.B.C.D.
在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是
A.B.C.D.
在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为,,,,,,考生从中随机抽取一道试题,则某个考生抽到试题的概率为
A.B.C.D.
一个不透明的口袋中,装有5个黄球、4个蓝球和若干个红球,每个球除颜色外都相同.从中任意摸出一个球是黄球的概率是,则从中任意摸出一个球是红球的概率是
A.B.C.D.
用几何概率求随机事件的概率
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积或度数)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )
A.B.C.D.
如图,在的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形(阴影部分)的概率是
A.B.C.D.
一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为
A.B.C.D.
已知的两条直径,互相垂直,分别以,,,为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为,针尖落在内的概率为,则 .
与其它知识点的综合
在六张卡片上分别写有,,3.1415,,0,六个数,从中随机抽取一张,卡片上的数为无理数的概率是
A.B.C.D.
从﹣1,1,2三个数中任取一个,作为二次函数y=kx2+3的k值,则所得函数中,当x<0时,y随x的增大而增大的概率是( )
A.B.C.D.
2022年央视春晚节目中,精彩魔术《迎春纳福》给大家留下了深刻印象,春晚带火了魔方现将六个面都涂有颜色的魔方按如图所示方式分割成27个大小相同的小正方体,并将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,则该小正方体有三个面涂有颜色的概率为
A.B.C.D.
如图,在的方格中,、、、、、分别位于格点上,从、、、四点中任取一点,与点、为顶点作三角形,则所作三角形为等腰三角形的概率是 .
如图是计算机“扫雷”游戏的画面,在个小方格的雷区中,随机地埋藏着20颗地雷,每个小方格最多能埋藏1颗地雷.小林和小艾轮流点击,小林先点一个小方格,显示数字2,它表示围着数字2的8个方块中埋藏着2颗地雷(包含数字2的黑框区域记为.
(1)若小艾在区域内围着数字2的8个方块中任点一个,未踩中地雷的概率是多少?
(2)现在小艾点击了右下角的一个方格,出现了数字1(包含数字1的黑框区域记为,轮到小林点击,若小林打算在区域和区域中任点一个未点击的方块,从安全的角度考虑,他应该选择哪个区域?说明理由.
如图是扫雷游戏的一部分:(说明:图中数字2表示在以该数字为中心相邻的8个方格中有2个地雷).小旗表示该方格已被探明有地雷,现在还剩下,,三个方格未被探明,其他地方为安全区(包括有数字的方格).
(1)现在还剩下几个地雷?
(2),,三个方格中有地雷的概率分别是多大?
两步实验的概率
1.直接列举法求概率
当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,通常采用直接列举法。
2.列表法求概率
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
3.树状图法求概率
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
将4张分别写着“强”“国”“有”“我”的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中随机取出2张卡片,则取出的2张卡片中,恰好组成“强国”的概率为
A.B.C.D.
随机从1,2,3,4中任取两个不同的数,分别记为和,则的概率是
A.B.C.D.
某班级计划举办手抄报展览,确定了“时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是
A.B.C.D.
某校开展岗位体验劳动教育活动,设置了“安全小卫士”“环保小卫士”“图书管理小卫士”“宿舍管理小卫士”共四个岗位,每个岗位体验人数不限且每位同学只能从中随机选择一个岗位进行体验.甲、乙两名同学都参加了此项活动,则这两名同学恰好在同一岗位体验的概率为
A.B.C.D.
概率综合运用
佛山是珠江三角洲的“美食之乡”,粤菜发源地之一.某学校要举行“我为佛山美食代言”的宣讲活动,主要介绍佛山的民间特色食品,已知学校给定了4个极具特色的主题:.双皮奶,.盲公饼,.大良蹦砂,.佛山九层糕,参加的选手从这四个主题中随机抽取一个进行宣讲,小明和小红都参加了这项活动.
(1)小明抽中“大良蹦砂”的概率是 ;
(2)请用列表法或树状图法中的一种方法,求小明和小红抽中同一个主题的概率.
某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为、、、、.
为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对、、、四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出厂家的合格率为,并根据检测数据绘制了如图1、图2两幅不完整的统计图.
(1)抽查厂家的零件为 件,扇形统计图中厂家对应的圆心角为 ;
(2)抽查厂家的合格零件为 件,并将图1补充完整;
(3)通过计算说明合格率排在前两名的是哪两个厂家;
(4)若要从、、、四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.
某学校为了增强学生体质,决定开设以下体育课外活动项目:篮球、乒乓球、跳绳、踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
游戏的公平性
现有、两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,袋装有2个白球,1个红球;袋装有2个红球,1个白球.
(1)将袋摇匀,然后从袋中随机取出一个小球,求摸出小球是白色的概率;
(2)小华和小林商定了一个游戏规则:从摇匀后的,两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.
某中学要在全校学生中举办“中国梦我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).
规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.
如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:
(1)小亮掷得向上一面的点数为奇数的概率是多少?
(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)
在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.
(1)“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;
(2)从中任意抽取1个球恰好是红球的概率是 ;
(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.
有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.
(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;
(2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?
三步实验的概率
某市今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码,,表示)、三个化学物实验题(题签分别用代码、、表示),二个生物实验题(题签分别用代码,表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从他们中随机地各抽取一个题签.
(1)请你用画树状图的方法,写出他恰好抽到的情况;
(2)求小亮抽到的题签代码的下标(例如“”的下标为“2” 之和为7的概率是多少?
节约能源,从我做起.为响应长株潭“两型社会”建设要求,小李决定将家里的4只白炽灯全部换成节能灯.商场有功率为和两种型号的节能灯若干个可供选择.
(1)列出选购4只节能灯的所有可能方案,并求出买到的节能灯都为同一型号的概率;
(2)若要求选购的4只节能灯的总功率不超过,求买到两种型号的节能灯数量相等的概率.
频率与概率之间的关系
频率的定义
在n次重复试验中,不确定事件A发生了m次,则比值称为事件A发生的频率.
在一个不透明的口袋中装有4个红球,5个白球和若干个黑球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到白球的频率稳定在附近,则口袋中黑球可能有 .
A.10个B.11个C.12个D.13个
木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有 张.
12
只有颜色不同的15个红球和若干个白球装在不透明的袋子里,从袋子里摸出一个球记录下颜色后放回,经过多次重复试验,发现摸到红球的频率稳定在0.6,则袋中红球与白球共有 个.
25
一个不透明的盒子里有个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数为
A.20B.24C.28D.30
某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
下面四个实验中,实验结果概率最小的是
A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率
B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率
C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率
D.有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率
如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是
A.B.C.D.
如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620
其中合理的是
A.①B.②C.①②D.①③
用频率估计概率
(1)一般地,在大量重复试验中,如果事件发生的频率稳定于某个常数,那么事件发生的概率.
(2)试验的所有可能结果不是有限个或者可能出现的结果发生的可能性不一定相等时,都可以通过统计频率来估计概率.
(3)注意点:一般地,用频率估计概率时,试验次数应该尽可能多,试验次数越多,结果越接近事件发生的概率.
(4)概率是通过大量重复试验中频率的稳定性得到的介于0~1的常数,它反映了事件发生的可能性大小.
某家庭记录了未使用节水龙头50天的日用水量(单位:和使用了节水龙头50天的日用水量,得到频数分布表如下:
表1未使用节水龙头50天的日用水量频数分布表
表2使用了节水龙头50天的日用水量频数分布表
(1)估计该家庭使用节水龙头后,日用水量小于的概率;
(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.
在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球试验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:
(1)按表格数据格式,表中的 ; ;
(2)请估计:当次数很大时,摸到白球的频率将会接近 (精确到;
(3)请推算:摸到红球的概率是 (精确到;
(4)试估算:这一个不透明的口袋中红球有 只.
一.选择题(共8小题)
1.下列事件是必然事件的是
A.明天太阳从西方升起
B.打开电视机,正在播放广告
C.掷一枚硬币,正面朝上
D.任意一个三角形,它的内角和等于
2.下列成语所描述的事件是必然事件的是
A.守株待兔B.拔苗助长C.瓮中捉鳖D.水中捞月
3.下列成语所描述的事件中是不可能事件的是
A.守株待兔B.瓮中捉鳖C.百步穿杨D.水中捞月
4.从一副扑克牌中任意抽出一张,可能性相同的是
A.大王与黑桃B.大王与10C.10与红桃D.红桃与梅花
5.下列事件是必然发生的事件的是
A.在地球上,上抛的篮球一定会下落
B.明天的气温一定比今天的高
C.中秋节晚上一定能看到月亮
D.某彩票中奖率是,买100张彩票一定中奖一张
6.某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是”,则对该同学的说法理解最合理的是
A.小东夺冠的可能性较大
B.如果小东和他的对手比赛10局,他一定会赢8局
C.小东夺冠的可能性较小
D.小东肯定会赢
7.小华把如图所示的的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是
A.B.C.D.
8.下列说法正确的是
A.某一事件发生的可能性非常大就是必然事件
B.概率很小的事情不可能发生
C.2022年1月27日杭州会下雪是随机事件
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
二.填空题(共4小题)
9.“正方形既是矩形又是菱形”是 事件.(填“必然”、“随机”、“不可能”
10.“若,则”这一事件是 .(填“必然事件”“不可能事件”或“随机事件”
11.写一个你喜欢的实数的值 ,使得事件“对于二次函数,当时,随的增大而增大”成为随机事件.
12.转动如图的转盘(转盘中各个扇形的面积都相等),当它停止转动时,指针指向标有数字 的区域的可能性最小.
三.解答题(共3小题)
13.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的3000例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:
(1)本次抽样调查的样本容量为 .
(2)补全条形统计图;
(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为 .
(4)估计所有3000例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?
14.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事件是不确定事件、不可能事件,还是必然事件.
(1)从口袋中任意取出一个球,是一个白球;
(2)从口袋中一次任取5个球,全是蓝球;
(3)从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.
15.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出个球,红球、白球、黑球至少各有一个.
(1)当为何值时,这个事件必然发生?
(2)当为何值时,这个事件不可能发生?
(3)当为何值时,这个事件可能发生?
日用水量
频数
1
3
2
4
9
26
5
日用水量
频数
1
5
13
10
16
5
摸球的次数
150
300
600
900
1200
1500
摸到白球的频数
63
247
365
484
606
摸到白球的频率
0.420
0.410
0.412
0.406
0.403
专题23.1 旋转(基础)-【题型分层练】2022-2023学年九年级数学上册单元题型精练(基础题型+强化题型)(人教版): 这是一份专题23.1 旋转(基础)-【题型分层练】2022-2023学年九年级数学上册单元题型精练(基础题型+强化题型)(人教版),文件包含九年级数学上册专题231旋转基础原卷版docx、九年级数学上册专题231旋转基础解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
专题25.1 概率初步【中考真题】(强化)-【题型分层练】2022-2023学年九年级数学上册单元题型精练(基础题型+强化题型)(人教版): 这是一份专题25.1 概率初步【中考真题】(强化)-【题型分层练】2022-2023学年九年级数学上册单元题型精练(基础题型+强化题型)(人教版),文件包含九年级数学上册专题251概率初步中考真题强化原卷版docx、九年级数学上册专题251概率初步中考真题强化解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
专题24.4 弧长和扇形面积(基础)-【题型分层练】2022-2023学年九年级数学上册单元题型精练(基础题型+强化题型)(人教版): 这是一份专题24.4 弧长和扇形面积(基础)-【题型分层练】2022-2023学年九年级数学上册单元题型精练(基础题型+强化题型)(人教版),文件包含九年级数学上册专题244弧长和扇形面积基础原卷版docx、九年级数学上册专题244弧长和扇形面积基础解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。