洛阳市重点中学2022-2023学年数学七年级第二学期期末教学质量检测模拟试题含答案
展开这是一份洛阳市重点中学2022-2023学年数学七年级第二学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
洛阳市重点中学2022-2023学年数学七年级第二学期期末教学质量检测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知4<m<5,则关于x的不等式组的整数解共有( )
A.1个 B.2个 C.3个 D.4个
2.下列命题的逆命题成立的是( )
A.对顶角相等 B.两直线平行,同位角相等
C.如果a=b,那么a2 =b2 D.正方形的四条边相等
3.如图,在菱形ABCD中,对角线AC与BD相交于点O,若BC=3,∠ABC=60°,则BD的长为( )
A.2 B.3 C. D.
4.设直角三角形的两条直角边分别为a和b,斜边长为c,已知,,则( )
A.3 B.4 C.5 D.8
5.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )
A.梯形 B.矩形 C.菱形 D.正方形
6.某校为了了解学生在校午餐所需的时间,抽查了 20 名同学在校午餐所需的时间,获得如 下数据(单位:分):10,12,15,10,1,18,19,18,20,34,22,25,20,18,18,20,15,1,21,1.若将这些数据分为 5组,则组距是( )
A.4 分 B.5 分 C.6 分 D.7 分
7.化简的结果是( )
A.2 B.-4 C.4 D.±4
8.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若,则S1+S2的值为( )
A.3 B.4 C.5 D.6
9.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程=1有非负整数解的概率是( )
A. B. C. D.
10.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为( )
A.9 B.10 C.12 D.14
11.已知,下列不等式中错误的是( )
A. B. C. D.
12.已知点A的坐标为(3,﹣6),则点A所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.我国古代数学领域有些研究成果曾位居世界前列,其中“杨辉三角”就是一例.南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用图中的三角形解释二项和的乘方规律.杨辉三角两腰上的数都是1,其余每个数都为它的上方(左右)两数之和,这个三角形给出了(a+b)n(n=1,2,3,4,5)的展开式(按a的次数由大到小的顺序)的系数规律.例如,此三角形中第3行的3个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数:第4行的4个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中各项的系数,等等.利用上面呈现的规律填空:(a+b)6=a6+6a5b+________ +20a3b3+15a2b4+ ________+b6
14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
15.如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.
16. “暑期乒乓球夏令营”开始在学校报名了,已知甲、乙、丙三个夏令营组人数相等,且每组学生的平均年龄都是14岁,三个组学生年龄的方差分别是,, 如果今年暑假你也准备报名参加夏令营活动,但喜欢和年龄相近的同伴相处,那么你应选择是________.
17.等边三角形的边长是4,则高AD_________ (结果精确到0.1)
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.
(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.
①求证:MA=MC;
②求MN的长;
(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积
19.(5分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图如下:
b.甲校成绩在的这一组的具体成绩是:
87 88 88 88 89 89 89 89
c.甲、乙两校成绩的平均分、中位数、众数、方差如下:
根据以上图表提供的信息,解答下列问题:
(1)表1中a = ;表2中的中位数n = ;
(2)补全图1甲校学生样本成绩频数分布直方图;
(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是 校的学生(填“甲”或“乙”),理由是 ;
(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为__________.
20.(8分)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心. 组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.
(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?
(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?
21.(10分)解不等式组:,并在数轴上表示出它的解集.
22.(10分)如图,在菱形ABCD中,∠ABC=120°,AB=4,E为对角线AC上的动点(点E不与A,C重合),连接BE,将射线EB绕点E逆时针旋转120°后交射线AD于点F.
(1)如图1,当AE=AF时,求∠AEB的度数;
(2)如图2,分别过点B,F作EF,BE的平行线,且两直线相交于点G.
①试探究四边形BGFE的形状,并求出四边形BGFE的周长的最小值;
②连接AG,设CE=x,AG=y,请直接写出y与x之间满足的关系式,不必写出求解过程.
23.(12分)如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求BC的长.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、B
2、B
3、C
4、B
5、C
6、B
7、C
8、B
9、C
10、A
11、D
12、D
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、15a4b2 6ab5
14、1或1或1
15、(2,−2)或(6,2).
16、乙组
17、3.1
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)①见解析;②;(2)△BEG的面积为48﹣6或48+6
19、(1)1,88.5;(2)见解析;(3)乙,乙的中位数是85,87>85;(4)140
20、(1)组装A、B两种型号的健身器材共有9种组装方案;(2)总组装费用最少的组装方案:组装A型器材22套,组装B型器材18套
21、﹣2<x≤3
22、(1)45°;(2)①四边形BEFG是菱形,8;② y=(0<x<12)
23、12.
相关试卷
这是一份龙岩市重点中学2022-2023学年七年级数学第二学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份滨州市重点中学2022-2023学年七年级数学第二学期期末教学质量检测模拟试题含答案,共6页。试卷主要包含了在平面直角坐标系中,点M,当x=1时,下列式子无意义的是,若化简的结果为,则的取值范围是,下面几种说法等内容,欢迎下载使用。
这是一份2022-2023学年雅安市重点中学数学七年级第二学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知直线y=mx+n,函数y=中自变量x的取值范围为等内容,欢迎下载使用。