湖北省随州市随县2022-2023学年数学七下期末监测模拟试题含答案
展开湖北省随州市随县2022-2023学年数学七下期末监测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的( )
A. B. C. D.
2.下列各式中,属于分式的是( )
A. B. C. D.
3.已知点,、,是直线上的两点,下列判断中正确的是( )
A. B. C.当时, D.当时,
4.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的数为( )
A.2 B. C. D.
5.下列几组由组成的三角形不是直角三角形的是( )
A. B.
C. D.
6.一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是( )
A.12 B.13 C.14 D.12或14
7.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )
A.29人 B.30人 C.31人 D.32人
8.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有( )
A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0
9.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是( )
A.6 B.2 C.2 D.2+2
10.如图,在菱形中, , 是上一点,, 是边上一动点,将四边形沿宜线折叠,的对应点.当的长度最小时,则的长为( )
A. B. C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
12.在矩形中,,,以为边在矩形外部作,且,连接,则的最小值为___________.
13.菱形的周长为8,它的一个内角为60°,则菱形的较长的对角线长为__________.
14.如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.
15.已知,若是二元一次方程的一个解,则代数式的值是____
16.甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.
三、解下列各题(本大题共8小题,共72分)
17.(8分)如图是甲、乙两名射击运动员的5次训练成绩的折线统计图:
(1)分别计算甲、乙运动员射击环数;
(2)分别计算甲、乙运动员射击成绩的方差;
(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.
18.(8分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.
(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;
(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.
①若该养老中心建成后可提供养老床位200个,求t的值;
②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?
19.(8分)解方程:
(1);
(2)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.求甲、乙两公司各有多少人?
20.(8分)把一个足球垂直水平地面向上踢,时间为(秒)时该足球距离地面的高度(米)适用公式
经过多少秒后足球回到地面?
经过多少秒时足球距离地面的高度为米?
21.(8分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.
(1)问:第一次每本的进货价是多少元?
(2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?
22.(10分)△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于x轴对称的△A1B1C1;
(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1.
23.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.
(1)求证:CE=CF.
(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;
(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
①若AE=6,DE=10,求AB的长;
②若AB=BC=9,BE=3,求DE的长.
24.(12分)如图,矩形中,,,过对角线的中点的直线分别交,边于点,连结,.
(1)求证:四边形是平行四边形.
(2)当四边形是菱形时,求及的长.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、C
5、A
6、C
7、B
8、D
9、D
10、D
二、填空题(本大题共有6小题,每小题3分,共18分)
11、y=x+1.
12、
13、
14、-1
15、
16、乙
三、解下列各题(本大题共8小题,共72分)
17、(1)8(环),8(环);(2)2.8,0.8;(3)选择甲,因为成绩呈上升趋势;选择乙,因为成绩稳定.
18、(1)20%;(2)①1;②该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
19、(1),;(2)甲公司有1名员工,乙公司有25名员工.
20、(1)秒后足球回到地面;(2)经过秒或秒足球距地面的高度为米.
21、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.
22、(1)见解析;(1)见解析.
23、(1)证明见解析;(2)成立;(3)①12;②7.1
24、(1)证明见解析;(2)BE=5,EF=.
湖北省随州市随县2022-2023学年七年级下学期期末学业质量监测数学试卷(含答案): 这是一份湖北省随州市随县2022-2023学年七年级下学期期末学业质量监测数学试卷(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省随州市随县2022-2023学年八年级下学期期末学业质量监测数学试卷(含解析): 这是一份湖北省随州市随县2022-2023学年八年级下学期期末学业质量监测数学试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖北省随州市随县中考模拟数学试题(解析版): 这是一份2023年湖北省随州市随县中考模拟数学试题(解析版),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。