眉山市重点中学2022-2023学年七年级数学第二学期期末经典模拟试题含答案
展开
这是一份眉山市重点中学2022-2023学年七年级数学第二学期期末经典模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列判定中,正确的个数有,下列命题是假命题的是等内容,欢迎下载使用。
眉山市重点中学2022-2023学年七年级数学第二学期期末经典模拟试题(时间:120分钟 分数:120分) 学校_______ 年级_______ 姓名_______ 注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是( )A.B.C.D.2.如图,直线与的交点的横坐标为,则关于的不等式的整数解为( ).A. B.C. D.3.已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是( )A.平行四边形 B.矩形 C.菱形 D.正方形4.已知实数,在数轴上的位置如图所示,化简:的结果是( )A. B.C. D.5.某中学书法兴趣小组10名成员的年龄情况如下表:年龄/岁14151617人数3421则该小组成员年龄的众数和中位数分别是( )A.15,15 B.16,15 C.15,17 D.14,156.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是( )A.方案一 B.方案二 C.方案三 D.方案四7.下列判定中,正确的个数有( )①一组对边平行,一组对边相等的四边形是平行四边形;②对角线互相平分且相等的四边形是矩形;③对角线互相垂直的四边形是菱形;④对角线互相垂直平分且相等的四边形是正方形,A.1个 B.2个 C.3个 D.4个8.八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示 甲乙丙丁平均数85939386方差333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )A.甲 B.乙 C.丙 D.丁9.下列命题是假命题的是( )A.四边都相等的四边形为菱形 B.对角线互相平分的四边形为平行四边形C.对角线相等的平行四边形为矩形 D.对角线互相垂直且相等的四边形为正方形10.要使式子有意义,则实数的取值范围是( )A. B. C. D.二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为______.12.如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.13.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.14.如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是_____.15.如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.16.如图,点在的平分线上,,垂足为,点在上,若,则__.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.(1)求一次函数与反比例函数的解析式;(2)点C(-1,0)是轴上一点,求△ABC的面积. 18.(8分)如图,∠AOB=30°,OP=6,OD=2,PC=PD,求OC的长. 19.(8分)下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:考试类别平时考试期中考试期末考试第一单元第二单元第三单元第四单元成绩(分)857890919094(1)小明6次成绩的众数是 ,中位数是 ;(2)求该同学这个同学这一学期平时成绩的平均数;(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分? 20.(8分)已知,两地相距km,甲、乙两人沿同一公路从地出发到地,甲骑摩托车,乙骑电动车,图中直线,分别表示甲、乙离开地的路程 (km)与时问 (h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点地用了多长时间?(3)在乙出发后几小时,两人相遇? 21.(8分)如图,已知,在一条直线上,.求证:(1);(2)四边形是平行四边形. 22.(10分)如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.(1)求出直线的解析式;(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.(3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由. 23.(10分)射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤1260.1212<x≤15mb15<x≤182n根据以上图表信息,解答下列问题:(1)表中a= ,b= ;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人? 24.(12分)如图,正方形的边长为2, 边在轴上, 的中点与原点重合,过定点与动点的直线记作.(1)若的解析式为,判断此时点是否在直线上,并说明理由;(2)当直线与边有公共点时,求的取值范围. 参考答案 一、选择题(每小题3分,共30分)1、D2、D3、B4、B5、A6、D7、B8、B9、D10、C 二、填空题(本大题共有6小题,每小题3分,共18分)11、 12、113、114、x≤115、1或316、1. 三、解下列各题(本大题共8小题,共72分)17、(1),;(2).18、OC=4.19、(1)90分;90分;(2)86分;(3)91.2分.20、(1)甲比乙晚出发1个小时,乙的速度是20km/h;(2)乙到达终点B地用时4个小时;(3)在乙出发后2小时,两人相遇.21、(1)详见解析;(2)详见解析.22、(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.23、(1)12;0.08 (2)12(3)67224、(1)点在直线上,见解析;(2)的取值范围是.
相关试卷
这是一份随州市重点中学2022-2023学年七年级数学第二学期期末经典模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列各数,要使二次根式有意义,x必须满足等内容,欢迎下载使用。
这是一份遂宁市重点中学2022-2023学年数学七年级第二学期期末经典模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,计算+的值等于,分式方程-1=的解为,下列说法中正确的是等内容,欢迎下载使用。
这是一份莆田市重点中学2022-2023学年七年级数学第二学期期末经典模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列调查中,不适宜用普查的是,如图,△AOB是等边三角形,B等内容,欢迎下载使用。