人教版初中数学九年级上册 第23章《旋转 小结与复习》课件+教案+同步检测(含教学反思)
展开第23章 旋转(单元测试)
一、单选题(每题3分,共30分)
1.下列图形既是轴对称图形,又是中心对称图形的是( )
A.B.C. D.
2.若点与点关于原点成中心对称,则的值是( )
A.1 B.3 C.5 D.7
3.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的( )
A.内部 B.外部 C.边上 D.以上都有可能
5.二次函数的图象的顶点坐标是,且图象与轴交于点.将二次函数的图象以原点为旋转中心顺时针旋转180°,则旋转后得到的函数解析式为( )
A. B.
C. D.
6.如图,等边三角形ABC内有一点P,分别连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=( ).
A.20+16 B.24+12 C.20+12 D.24+16
7.时钟上的分针匀速旋转一周需要 60min,则经过 5min,分针旋转了( )
A.10° B.20° C.30° D.60°
8.如图,在正方形网格中有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使得整个黑色图形构成一个轴对称图形.那么涂法共有( )
A.3种 B.4种 C.5种 D.6种
9.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为( )
A.(4,1) B.(4,﹣1) C.(5,1) D.(5,﹣1)
10.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题(每题4分,共20分)
11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为 .
12.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为 cm.
13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是 .(填写图形的相应编号)
14.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为 .
15.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为 cm2.
三、解答题(16-18题每题4分,19题5分,20题7分,21、22题每题8分,23题10分,共50分)
16.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1) 请画出△ABC向左平移5个单位长度后得到的△ABC;
(2) 请画出△ABC关于原点对称的△ABC;
(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,
并直接写出P的坐标.
17.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:
(1)使得4个阴影小等边三角形组成一个轴对称图形.
(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)
18.如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.
(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);
(2)若∠A=110°,∠D=40°,求∠AOD的度数.
19.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.
(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?
解:图形A的最小旋转角是 度,它 中心对称图形.
图形B的最小旋转角是 度,它 中心对称图形.
图形C的最小旋转角是 度,它 中心对称图形.
图形D的最小旋转角是 度,它 中心对称图形.
图形E的最小旋转角是 度,它 中心对称图形.
20.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).
(1)求证:四边形EHFG是平行四边形;
(2)若∠α=90°,AB=9,AD=3,求AE的长.
21.在Rt△ABC中,∠ACB=90°,AC=BC=3,点D是斜边AB上一动点(点D与点A、B不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.
(1)求△ADE的周长的最小值;
(2)若CD=4,求AE的长度.
22.如图,是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接,,.若,,,求四边形的面积.
23.已知和都是等腰直角三角形,.
(1)如图1,连接,,求证:;
(2)将绕点O顺时针旋转.
①如图2,当点M恰好在边上时,求证:;
②当点A,M,N在同一条直线上时,若,,请直接写出线段的长.