所属成套资源:2024版新教材高考数学全程一轮总复习课件(69份)
2024版新教材高考数学全程一轮总复习高考大题研究课四利用正弦余弦定理解三角形课件
展开这是一份2024版新教材高考数学全程一轮总复习高考大题研究课四利用正弦余弦定理解三角形课件,共33页。
题后师说利用正弦、余弦定理解三角形的关键就是边角转化,可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.解题时,常用到三角形的内角和定理、三角形面积公式等.
题后师说三角形中的范围问题一般先通过正、余弦定理将边转化为角,再根据三角恒等变换及三角形内角和定理转化为“一角一函数”的形式,最后结合角的范围利用三角函数的单调性和值域求解.
题后师说平面图形中的解三角形问题求解思路(1)把所提供的平面图形拆分成多个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.解题时,有时要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的性质,要把这些知识与正弦、余弦定理有机结合,才能顺利解决问题.
3.[2021·新高考Ⅰ卷]记△ABC的内角A,B,C的对边分别为a,b,c.已知b2=ac,点D在边AC上,BD sin ∠ABC=a sin C.(1)证明:BD=b;(2)若AD=2DC,求cs ∠ABC.
4.[2021·新高考Ⅱ卷]在△ABC中,角A、B、C所对的边长分别为a、b、c,b=a+1,c=a+2.(1)若2sin C=3sin A,求△ABC的面积;(2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;若不存在,说明理由.
相关课件
这是一份2024版新教材高考数学全程一轮总复习高考大题研究课一利用导数研究不等式恒能成立问题课件,共24页。
这是一份2024版新教材高考数学全程一轮总复习高考大题研究课五数列的综合课件,共28页。PPT课件主要包含了题后师说等内容,欢迎下载使用。
这是一份2024版新教材高考数学全程一轮总复习高考大题研究课十证明与探索问题课件,共28页。