





第15讲 万有引力与航天—备战2024年高考一轮复习精细讲义
展开
第15讲 万有引力与航天
——划重点之精细讲义系列
考点一 天体质量和密度的估算
一.开普勒行星运动定律
定律
内容
图示
开普勒第一定律
所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上
开普勒第二定律
对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积
开普勒第三定律
所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.=k
二.万有引力定律
1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离的平方成反比.
2.公式:F=G,其中G=6.67×10-11N·m2/kg2.
3.适用条件
公式适用于质点间的相互作用.当两物体间的距离远大于物体本身的大小时,物体可视为质点;均匀的球体可视为质点,r是球心间的距离;对一个均匀球体与球外一个质点的万有引力的求解也适用,其中r为球心到质点间的距离.
1.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即
G=man=m=mω2r=m
(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G=mg(g表示天体表面的重力加速度).
2.天体质量和密度的计算
(1)利用天体表面的重力加速度g和天体半径R.
由于G=mg,故天体质量M=,
天体密度ρ===.
(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.
①由万有引力等于向心力,即G=mr,得出中心天体质量M=;
②若已知天体半径R,则天体的平均密度
ρ===;
③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,则天体密度ρ=.可见,只要测出卫星环绕天体表面运动的周期T,就可估算出中心天体的密度.
【典例1】(多选)通过观测冥王星的卫星,可以推算出冥王星的质量.假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量.这两个物理量可以是( )
A.卫星的速度和角速度
B.卫星的质量和轨道半径
C.卫星的质量和角速度
D.卫星的运行周期和轨道半径
解析:选AD.由v=ωr可求出r,根据G=m或G=mω2r可求出冥王星的质量,A正确.根据G=mr可求出冥王星的质量,D正确.B和C中都由于已知量不足,无法求出冥王星的质量.
【典例2】假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g0,在赤道的大小为g;地球自转的周期为T,引力常量为G.地球的密度为( )
A.· B.·
C. D.·
解析:选B.设地球半径为R.质量为m的物体在两极点时,有mg0=G,在赤道时,有G-mg=mR2,又地球的密度ρ=,由各式联立得ρ=,选项B正确.
【典例3】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的.该中心恒星与太阳的质量比约为( )
A. B.1
C.5 D.10
解析:选B.行星绕中心恒星做匀速圆周运动,万有引力提供向心力,由牛顿第二定律得G=mr,则=3·2=3×2≈1.选项B正确.
解决天体质量和密度的估算问题的两点注意
(1)卫星的轨道半径与中心天体的半径不要混淆,只有近地卫星的轨道半径才近似等于天体半径.
(2)搞清“以谁为研究对象,谁是中心天体”、“受力特点”、“谁做圆周运动”等,明确一般只能求解中心天体的质量和密度,不能求解环绕天体的质量和密度.
考点二 卫星的运行规律
1.卫星的运行规律
(1)卫星做匀速圆周运动.
(2)万有引力提供向心力:即由G=m=mrω2=mr=man可推导出:
⇒当r增大时
2.同步卫星的六个“一定”
3.三种宇宙速度
宇宙速度
数值(km/s)
意义
第一宇宙速度
(环绕速度)
7.9
是人造地球卫星的最小发射速度,也是人造地球卫星绕地球做圆周运动的最大运行速度.
第二宇宙速度
(脱离速度)
11.2
使物体挣脱地球引力束缚的最小发射速度.
第三宇宙速度
(逃逸速度)
16.7
使物体挣脱太阳引力束缚的最小发射速度.
【典例1】(多选) 如图所示,P、Q是质量均为m的两个质点,分别置于地球表面的不同纬度上,如果把地球看成一个均匀球体,P、Q两质点随地球自转做匀速圆周运动,则下列说法正确的是( )
A.P、Q受地球引力大小相等
B.P、Q做圆周运动的向心力大小相等
C.P、Q做圆周运动的角速度大小相等
D.P受地球引力大于Q所受地球引力
解析:选AC.计算均匀球体与质点间的万有引力时,r为球心到质点的距离,因为P、Q到地球球心的距离相同,根据F=知,P、Q受地球引力大小相等,P、Q随地球自转,角速度相同,但轨道半径不同,根据Fn=mRω2,P、Q做圆周运动的向心力大小不同,A、C正确,B、D错误.
【典例2】如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b到地心O的距离分别为r1、r2,线速度大小分别为v1、v2,则( )
A.= B.=
C.=2 D.=2
解析:选A.对人造卫星,根据万有引力提供向心力=m,可得v= ,所以对于a、b两颗人造卫星有=,故选项A正确.
【典例3】国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为( )
A.a2>a1>a3 B.a3>a2>a1
C.a3>a1>a2 D.a1>a2>a3
解析:选D.由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,可得:a=ω2r,由于r2>r3,则可以得出:a2>a3;又由万有引力定律有:G=ma,且r1<r2,则得出a2<a1.故选项D正确.
【典例4】假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )
A.地球公转的周期大于火星公转的周期
B.地球公转的线速度小于火星公转的线速度
C.地球公转的加速度小于火星公转的加速度
D.地球公转的角速度大于火星公转的角速度
解析:选D.根据G=m2r=m=man=mω2r得,公转周期T=2π ,故地球公转的周期较小,选项A错误;公转线速度v= ,故地球公转的线速度较大,选项B错误;公转加速度an=,故地球公转的加速度较大,选项C错误;公转角速度ω= ,故地球公转的角速度较大,选项D正确.
【典例5】(多选)在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R,地面上的重力加速度为g,忽略地球自转影响,则( )
A.卫星运动的速度大小为
B.卫星运动的周期为4π
C.卫星运动的向心加速度大小为g
D.卫星轨道处的重力加速度为g
解析:选BD.地面上万有引力等于重力,即G=mg,该卫星到地面的距离等于地球半径R,则其轨道半径r=2R,其做匀速圆周运动的向心力由万有引力提供,根据牛顿第二定律G=m=mr=ma=mg′,可求得卫星运动的速度大小v= ,周期T=4π ,向心加速度大小a=g′=g,选项A、C错误,B、D正确.
人造卫星问题的解题技巧
(1)卫星向心加速度的不同表述形式.
①G=man.
②an==rω2=r.
(2)解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿第二定律.
①卫星的an、v、ω、T是相互联系的,其中一个量发生变化,其他各量也随之发生变化.
②an、v、ω、T均与卫星的质量无关,只由轨道半径r和中心天体质量共同决定.
考点三 航天器的变轨问题
1.卫星轨道的渐变:当卫星由于某种原因速度逐渐改变时,万有引力不再等于向心力,卫星将做变轨运行.
(1)当卫星的速度逐渐增加时,G<m,即万有引力不足以提供向心力,卫星将做离心运动,轨道半径变大,当卫星进入新的轨道稳定运行时由v= 可知其运行速度比原轨道时减小.
(2)当卫星的速度逐渐减小时,G>m,即万有引力大于所需要的向心力,卫星将做近心运动,轨道半径变小,当卫星进入新的轨道稳定运行时由v= 可知其运行速度比原轨道时增大.
2.卫星轨道的突变:由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.如图所示,发射同步卫星时,可以分多过程完成:
(1)先将卫星发送到近地轨道Ⅰ.
(2)使其绕地球做匀速圆周运动,速率为v1,变轨时在P点点火加速,短时间内将速率由v1增加到v2,使卫星进入椭圆形的转移轨道Ⅱ.
(3)卫星运行到远地点Q时的速率为v3,此时进行第二次点火加速,在短时间内将速率由v3增加到v4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动.
【典例1】(多选)我国已先后成功发射了“天宫一号”飞行器和“神舟八号”飞船,并成功地进行了对接试验,若“天宫一号”能在离地面约300 km高的圆轨道上正常运行,则下列说法中正确的是( )
A.“天宫一号”的发射速度应大于第二宇宙速度
B.对接前,“神舟八号”欲追上“天宫一号”,必须在同一轨道上点火加速
C.对接时,“神舟八号”与“天宫一号”的加速度大小相等
D.对接后,“天宫一号”的速度小于第一宇宙速度
解析:选CD.地球卫星的发射速度都大于第一宇宙速度,且小于第二宇宙速度,A错误;若“神舟八号”在与“天宫一号”同一轨道上点火加速,那么“神舟八号”的万有引力小于向心力,其将做离心运动,不可能实现对接,B错误;对接时,“神舟八号”与“天宫一号”必须在同一轨道上,根据a=G可知,它们的加速度大小相等,C正确;第一宇宙速度是地球卫星的最大运行速度,所以对接后,“天宫一号”的速度仍然要小于第一宇宙速度,D正确.
【典例2】我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )
A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
解析:选C. 若使飞船与空间实验室在同一轨道上运行,则飞船加速后,万有引力不足以提供向心力,飞船将远离原来的轨道,不能实现对接,A错误;若使飞船与空间实验室在同一轨道上运行,则空间实验室减速将会使空间实验室进入低轨道,也不能实现对接,故B错误;实现对接的方法是使飞船在比空间实验室低的轨道上加速,然后飞船进入较高的空间实验室轨道后实现对接,C正确;若使飞船在比空间实验室低的轨道上减速,则飞船将进入更低的轨道上去运行,无法实现对接,D错误.
【典例2】(多选)如图为嫦娥三号登月轨迹示意图.图中M点为环地球运行的近地点,N点为环月球运行的近月点.a为环月球运行的圆轨道,b为环月球运行的椭圆轨道,下列说法中正确的是( )
A.嫦娥三号在环地球轨道上的运行速度大于11.2 km/s
B.嫦娥三号在M点进入地月转移轨道时应点火加速
C.设嫦娥三号在圆轨道a上经过N点时的加速度为a1,在椭圆轨道b上经过N点时的加速度为a2,则a1>a2
D.嫦娥三号在圆轨道a上的机械能小于在椭圆轨道b上的机械能
解析:选BD.嫦娥三号在环地球轨道上运行速度v满足7.9 km/s≤v