- 【同步知识讲义】人教版数学八年级下册-16.3 二次根式的加减 知识点剖析讲义(原卷版+解析版) 试卷 6 次下载
- 【同步知识讲义】人教版数学八年级下册-17.1.1 勾股定理 知识点剖析讲义(原卷版+解析版) 试卷 4 次下载
- 【同步知识讲义】人教版数学八年级下册-17.1.3 利用勾股定理解决直角三角形翻折问题 知识点剖析讲义(原卷版+解析版) 试卷 3 次下载
- 【同步知识讲义】人教版数学八年级下册-17.1.4 利用勾股定理解决蚂蚁爬行问题专题 知识点剖析讲义(原卷版+解析版) 试卷 3 次下载
- 【同步知识讲义】人教版数学八年级下册-17.2 勾股定理逆定理 知识点剖析讲义(原卷版+解析版) 试卷 3 次下载
数学八年级下册第十七章 勾股定理17.1 勾股定理优秀同步测试题
展开17.1.2 勾股定理与实际问题
【题型一】求梯子滑落的高度
【典题】(2022秋·河北石家庄·八年级石家庄市第二十二中学校考期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为( ).
A.2.4m B.2.5m C.2.6m D.2.7m
巩固练习
1.()(2022秋·福建漳州·八年级校联考期中)如图,一个梯子斜靠在一竖直的墙上,测得.若梯子的顶端沿墙下滑,这时梯子的底端也恰好外移,则梯子的长度为( ).
A.2.5 B.3 C.1.5 D.3.5
2.()(2022秋·全国·八年级期中)如图,一架2.5m长的梯子,斜立在一竖直的墙上,这时梯子的底部距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯子的底部将平滑( )
A.0.9m B.1.5m C.0.5m D.0.8m
3.()(2022春·湖北随州·八年级统考期中)如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m
(1)求此时梯子的顶端A距地面的高度AC;
(2)如果梯子的顶端A下滑了0.9m,那么梯子的底端B在水平方向上向右滑动了多远?
4.()(2022春·山东滨州·八年级统考期中)一梯子长2.5m,如图那样斜靠在一面墙上,梯子底端离墙0.7m.
(1)这架梯子的顶端离地面有多高?
(2)设梯子顶端到水平地面的距离为,底端到垂直墙面的距离为,若,根据经验可知:当时,梯子最稳定,使用时最安全.若梯子的顶端下滑了,请问这时使用是否安全.
【题型二】求旗杆高度
【典题】(2022春·福建龙岩·八年级统考期中)为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB=2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC=0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )
A.1.0 米 B.1.2 米 C.1.25 米 D.1.5 米
巩固练习
1.()(2022春·河南新乡·八年级统考期中)如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )
A.12 B.13 C.15 D.24
2.()(2022秋·广东清远·八年级统考期末)如图,小华将升旗的绳子拉紧到旗杆底端点B,绳子末端刚好接触到地面,然后拉紧绳子使其末端到点D处,点D到地面的距离CD长为2m,点D到旗杆AB的水平距离为8m,若设旗杆的高度AB长为xm,则根据题意所列的方程是( ).
A. B.
C. D.
3.()(2022春·新疆乌鲁木齐·八年级乌鲁木齐市第六十八中学校考期中)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度,他们进行了如下操作:
①测得的长为15米(注:);
②根据手中剩余线的长度计算出风筝线的长为25米;
③牵线放风筝的小明身高1.7米.
(1)求风筝的高度.
(2)过点D作,垂足为H,求的长度.
4.()(2022秋·广东深圳·八年级校考期中)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.
【题型三】求小鸟飞行距离
【典题】(2022秋·陕西西安·八年级西安市铁一中学校考期中)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行().
A.8米 B.10米 C.12米 D.14米
巩固练习
1.()(2022秋·福建宁德·八年级统考期中)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,则小鸟至少要飞( )
A.8米 B.9米 C.10米 D.11米
2.()(2022秋·江苏南京·八年级校考期中)如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?
【题型四】求树枝折断前高度
【典题】(2022秋·江苏扬州·八年级校考期中)如图,一棵大树在一次强台风中于离地面10m处折断倒下,倒下部分的树梢到树的距离为24m,则这棵大树折断处到树顶的长度是( )
A.10m B.15m C.26m D.30m
巩固练习
1.()(2022春·山东德州·八年级校考期中)《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?( )
A.4尺 B.4.55尺 C.5尺 D.5.55尺
2.()(2022春·山东济宁·八年级统考期中)如图,一棵大树在离地面3,5两处折成三段,中间一段恰好与地面平行,大树顶部落在离大树底部6处,则大树折断前的高度是( )
A. B. C. D.
3.()(2022秋·福建三明·八年级统考期中)由于大风,山坡上的一颗甲树从A点处被拦腰折断,其顶点恰好落在一棵树乙的底部C处,如图所示,已知AB=4米,BC=13米,两棵树的水平距离是12米,求甲树原来的高度.
【题型五】求水中筷子长
【典题】(2022春·吉林松原·八年级统考期中)如图,是一种饮料的包装盒,长、宽、高分别为、、,现有一长为的吸管插入盒的底部,则吸管漏在盒外面的部分的取值范围为( )
A. B. C. D.
巩固练习
1.()(2022春·山东济宁·八年级统考期末)如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池边,它的顶端恰好到达池边的水面,求水的深度是( )尺
A.8 B.10 C.13 D.12
2.()(2022秋·重庆沙坪坝·八年级重庆八中校考期中)如图是一个圆柱形饮料罐,底面半径是3,高是4,上底面中心有一个小圆孔,则一条长10cm的直吸管露在罐外部分的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A. B. C. D.
3.()(2022春·山东济宁·八年级统考期中)如图长方体木箱的长、宽、高分别为,则能放进木箱中的直木棒最长为( )
A. B. C. D.
4.()(2022春·广西百色·八年级统考期末)如图是长、宽、高的长方体容器.
(1)求底面矩形的对角线的长;
(2)长方体容器内可完全放入的棍子最长是多少?
【题型六】航海问题
【典题】(2022春·福建福州·八年级福建省福州第一中学校考期中)如图,一轮船以12海里/时的速度从港口A出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后两船相距( )
A.13 海里 B.16 海里 C.20 海里 D.26 海里
巩固练习
1.()(2022春·河北保定·八年级统考期中)一艘轮船从A港向南偏西方向航行到达B岛,再从B岛沿方向航行到达C岛,A港到航线的最短距离是.若轮船速度为,轮船从C岛沿返回A港所需的时间是( )
A. B. C. D.
2.()(2022春·辽宁营口·八年级统考期末)如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了m 到达点B,然后再沿北偏西30°方向走了50m到达目的地C.
(1)求A、C两点之间的距离;
(2)确定目的地C在营地A的北偏东多少度方向.
3.()(2022春·河南·八年级校考期末)如图,明明在距离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.若明明收绳6m后,船到达D处,则船向岸A移动了多少米?
4.()(2022秋·广东深圳·八年级深圳市高级中学校考期中)如图所示,一艘轮船由A港口沿着北偏东的方向航行到达B港口,然后再沿北偏西方向航行到达C港口.
(1)求A,C两港口之间的距离;(结果保留根号)
(2)C港口在A港口的什么方向.
【题型七】求台阶上的电梯长度
【典题】(2022秋·广东茂名·八年级校考期中)如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯( )
A.5m B.6m C.7m D.8m
巩固练习
1.()(2022春·重庆九龙坡·八年级统考期末)如图有一个四级台阶,它的每一级的长、宽分别为18分米、4分米.
(1)如果给台阶表面8个矩形区域铺上定制红毯,需要定制红毯的面积为432平方分米,那么每一级台阶的高为多少分米?
(2)A和C是这个台阶上两个相对的端点,台阶角落点A处有一只蚂蚁,想到台阶顶端点C处去吃美味的食物,则蚂蚁沿着台阶面从点A爬行到点C的最短路程为多少分米?
2.()(2022春·广西百色·八年级统考期中)如图所示是一个三级台阶,它的每一级的长、宽、高分别等于7cm、6cm、2cm,A和B是这两个台阶的两个相对的端点,则一只蚂蚁从点A出发经过台阶爬到点B的最短路线有多长?
【题型八】汽车超速问题
【典题】(2022春·河北保定·八年级校联考期中)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪处的正前方的处,过了后,测得小汽车与车速检测仪间距离为,这辆小汽车超速了吗?(参考数据转换:)
巩固练习
1.()(2022春·重庆梁平·八年级统考期末)交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).
2.()(2022春·陕西西安·八年级陕西师大附中校考期末)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在到迎泽大街(直线AO)的距离(线段PO)为120米的点P处.这时,一辆小轿车由点A向点O匀速行驶,测得此车从点A处行驶到点B处所用的时间为5秒,且∠APO=60°,∠BPO=45°.(参考数据:≈1.414,≈1.732)
(1)求点A,B之间的距离;(精确到0.1米)
(2)请判断此车是否超过了迎泽大街每小时60千米的限制速度,并说明理由.
【题型九】是否受台风影响问题
【典题】(2022春·山东济宁·八年级统考期中)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.
(1)学校C会受噪声影响吗?为什么?
(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?
巩固练习
1.()(2022秋·四川达州·八年级校考期中)为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:
(1)请问村庄能否听到宣传,请说明理由;
(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?
2.()(2022秋·江苏·八年级期末)台风是一种自然灾害,它以台风中心为圆心在周围上百千米范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围以内为受影响区域.已知台风运动速度为.
(1)求的度数;
(2)求海港到直线的最短距离;
(3)海港受台风影响吗?若受影响请计算受影响时间,若不受影响请说明理由.
3.()(2022秋·四川遂宁·八年级四川省遂宁市第二中学校校考期末)在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站A的距离为米,与公路上另一停靠站的距离为米,且,如图,为了安全起见,爆破点周围半径米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.
【题型十】选址到两地距离相等
【典题】(2022秋·福建·八年级统考期末)如图,,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?
巩固练习
1.()(2022秋·江苏·八年级统考期中)“三农”问题是关系国计民生的根本问题,实施乡村振兴战略是建设美丽中国的关键举措.如图,公路上两点相距50km,为两村庄,于,于,已知,,现在要在公路上建一个土特产品市场,使得两村庄到市场的距离相等,则市场应建在距多少千米处?并判断此时的形状,请说明理由.
2.()(2022秋·陕西汉中·八年级统考期末)【背景介绍】勾股定理是几何学中的明珠,充满着魅力.
【知识运用】
(1)如图,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),,,垂足分别为A、B,千米,千米,则两个村庄的距离为 米.
(2)在(1)的背景下,若千米,千米,千米,现要在上建造一个供应站P,使得,请用尺规作图在图中作出P点的位置并求出的距离.
(3)【知识迁移】借助上面的思考过程与几何模型,则代数式(其中)最小值为 .
【题型十一】最短路径问题
【典题】(2022秋·广东揭阳·八年级统考期中)如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为( )
A. B.
C. D.
巩固练习
1.()(2022春·江西赣州·八年级统考期中)如图,长方体的长为3,宽为2,高为4,点B离点C的距离为1,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是( )
A. B.5 C. D.
2.()(2022春·新疆乌鲁木齐·八年级新疆师范大学附属中学校考期中)如图,透明的圆柱形容器(容器厚度忽略不计)的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿的点A处,则蚂蚁吃到饭粒需爬行的最短路径是( )
A. B. C. D.
3.()(2022秋·河南鹤壁·八年级统考期末)如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是多少?
4.()(2022春·四川广元·八年级统考期末)如图,亮亮在A处看护羊群吃草,其家在B处,A,B到河岸的距离分别为AC=200m,BD=100m,CD=400m,亮亮从A处把羊群赶到河边饮水后回家,作图说明亮亮如何行走路程最短,并求出亮亮走的最短路程.
5.()(2022秋·全国·八年级期中)如图,长方体的透明玻璃鱼缸,假设其长,高,水深为,在水面上紧贴内壁处有一鱼饵,在水面线上,且;一小虫想从鱼缸外的点沿壁爬进鱼缸内处吃鱼饵,求小动物爬行的最短距离.(鱼缸厚度忽略不计)
6.()(2022春·河南许昌·八年级校考期末)如图,一个牧童在小河正南方向4km的处牧马,若牧童从点向南继续前行7km到达点.则此时牧童的家位于点正东方向8km的处.牧童打算先把在点吃草的马牵到小河边饮水后再回家,请问他应该如何选择行走路径才能使所走的路程最短?最短路程是多少?请先在图上作出最短路径,再进行计算.
【同步知识讲义】人教版数学八年级下册-19.1 函数 知识点剖析讲义(原卷版+解析版): 这是一份【同步知识讲义】人教版数学八年级下册-19.1 函数 知识点剖析讲义(原卷版+解析版),文件包含191函数原卷版docx、191函数解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
初中数学人教版八年级下册18.2.3 正方形精品达标测试: 这是一份初中数学人教版八年级下册18.2.3 正方形精品达标测试,文件包含1823正方形原卷版docx、1823正方形解析版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
初中数学人教版八年级下册18.2.2 菱形精品练习题: 这是一份初中数学人教版八年级下册18.2.2 菱形精品练习题,文件包含1822菱形原卷版docx、1822菱形解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。