苏教版 (2019)必修 第二册15.2 随机事件的概率精品课后复习题
展开第25讲 随机事件的概率
课程标准 | 课标解读 |
1.结合具体实例,理解古典概型,能计算古典概型中简单随机事件的概率。 2.通过实例,理解概率的性质,掌握随机事件概率的运算法则。 | 1、通过阅读课本,查阅资料,并能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别与联系. 2、认真阅读课本,在读书过程中学会用有向线段、字母表示向量,了解有向线段与向量的联系与区别. 3、.在认真学习的基础上,理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.学会向量的表示方法.
|
知识点01 随机事件的概率
1.概率的定义
一般地,对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于 ,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的 ,记作 。
2.概率的基本性质
(1)对任意的事件A,都有 。
(2)对于必然事件Ω和不可能事件空集,显然 , 。
3.频率的稳定性
若随机事件A在n次试验中发生了m次,则当试验次数n很大时,可以用事件A发生的频率来估计事件A的概率,即 。
【微点拨】频率是概率的近似值,概率是频率的稳定值,随着试验次数的增加,频率会逐渐稳定于概率。
【即学即练1】下列说法不正确的是( )
A.必然事件是一定条件下必定发生的事件
B.不可能事件是一定条件下必然不会发生的事件
C.随机事件是在一定条件下可能发生也可能不发生的事件
D.事件A发生的概率一定满足
知识点02 古典概型
1.等可能基本事件:在一次试验中,每个基本事件发生的可能性都相同,这时也称这些基本事件为 基本事件。
2.古典概型的定义
考察一些试验,具有以下两个特点:
(1)样本空间Ω只含有有限个样本点;
(2)每个基本事件的发生都是 的。
我们将满足上述条件的随机试验的概率模型称为 。
3.古典概型的概率公式
在古典概型中,如果样本空间 (其中,n为样本点的个数),那么每一个基本事件 发生的概率都是。如果事件A由其中m个等可能基本事件组合而成,即A中包含m个样本点,那么事件A发生的概率为 。
【即学即练2】某篮球运动员在最近几次参加的比赛中的得分情况如下表(没有罚球):
投篮次数 | 投中两分球的次数 | 投中三分球的次数 |
100 | 55 | 18 |
记该运动员在一次投篮中,投中两分球为事件A,投中三分球为事件B,没投中为事件C,用频率估计概率的方法,得到的下述结论中不正确的是( )
A.P(A)=0.55 B.P(B)=0.18 C.P(C)=0.27 D.P(B+C)=0.55
考法 计算古典概型的概率
【典例1】某次高三年级模拟考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,为下一步教学作参考依据,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本.现采用分层抽样,按照学生选择A题目或B题目将成绩分为两层.已知该校高三学生有540人选做A题目,有360人选做B题目,选取的样本中,A题目的成绩平均数为5,方差为2,B题目的成绩平均数为5.5,方差为0.25.
(1)用样本估计该校这900名考生选做题得分的平均数与方差;
(2)本选做题阅卷分值都为整数,且选取的样本中,A题目成绩的中位数和B题目成绩的中位数都是5.5.从样本中随机选取两个大于样本平均值的数据做进一步调查,求取到的两个成绩来自不同题目的概率.
【典例2】全国爱卫办组织开展“地级市创卫工作”满意度调查工作,2023年2月14日24日在网上进行问卷调查,该调查是国家卫生城市评审的重要依据,居民可根据自身实际感受,对所在市创卫工作作出客观、公正的评价.现随机抽取了100名居民的问卷进行评分统计,评分的频率分布直方图如图所示,数据分组依次为:
(1)求的值以及这100名居民问卷评分的中位数;
(2)若根据各组的频率的比例采用分层随机抽样的方法,从评分在[65,70)和[70,75)内的居民中共抽取6人,查阅他们的答卷情况,再从这6人中选取2人进行专项调查,求这2人中恰有1人的评分在内的概率.
题组A 基础过关练
1.从含有三件正品和一件次品的产品中任取两件,则取出的两件中恰有一件次品的概率是( )
A. B. C. D.
2.如图所示的《宋人扑枣图轴》是作于宋朝的中国古画,该图中小孩有扑枣的爬、扶、捡、顶四个动作,现有两个孩童分别随机选择其中的一个动作进行模仿,则两个孩童选择模仿的动作相同的概率为( )
A. B. C. D.
3.下列事件中是随机事件的是( )
A.所有四边形的内角和为180°
B.通常加热到100℃,水沸腾
C.袋中有2个黄球,3个绿球,共5个球,随机摸出一个球是红球
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上
4.“是实数,”这一事件是( )
A.必然事件 B.不确定事件
C.不可能事件 D.随机事件
5.某工厂生产的产品的合格率是99.99%,这说明( )
A.该厂生产的10 000件产品中不合格的产品一定有1件
B.该厂生产的10 000件产品中合格的产品一定有9 999件
C.该厂生产的10 000件产品中没有不合格的产品
D.该厂生产的产品合格的可能性是99.99%
6.哥德巴赫猜想的部分内容如下:任一大于2的偶数可以表示为两个素数(素数是在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数)之和,如18=7+11.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是_______.
7.某人抛图钉250次,其中钉尖向上有70次,钉尖向上的经验概率是______.
8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在30%和40%,则口袋中白色球的个数可能是__________个.
9.在10个学生中,男生有个,现从10个学生中任选6人去参加某项活动.①至少有一个女生;②5个男生,1个女生;③3个男生,3个女生.当为何值时,使得①为必然事件,②为不可能事件,③为随机事件?
10.有1号、2号、3号三个信箱和A,B,C,D四封信,若4封信可以任意投入信箱,投完为止,其中A信恰好投入1号或2号信箱的概率是多少?
题组B 能力提升练
1.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类,在我国的云南及周边各省都有分布,春暖花开的时候是放蜂的大好时机,养蜂人甲在某地区放养了100箱小蜜蜂和1箱黑小蜜蜂,养蜂人乙在同一地区放养了1箱小蜜蜂和100箱黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂,假设每箱中蜜蜂的数量相同,那么,该生物小组的同学认为这只黑小蜜蜂是养蜂人 放养的比较合理( )
A.甲 B.乙
C.甲和乙 D.不能确定
2.某商场对某一商品搞活动,已知该商品每个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )
A. B.
C. D.
3.现有6个大小相同、质地均匀的小球,球上标有数字1,3,3,4,5,6.从这6个小球中随机取出两个球,如果已经知道取出的球中有数字3.则所取出的两个小球上数字都是3的概率为( )
A. B. C. D.
4.一种电路控制器在出厂时,每4件一等品装成一箱.工人装箱时,不小心将2件二等品和2件一等品装入了一箱,为了找出该箱中的二等品,需要对该箱中的产品逐件进行测试.假设检测员不知道该箱产品中二等品的具体数量,则测试的第2件产品是二等品的概率为( )
A. B. C. D.
5.一个盒子中有若干白色围棋子,为了估计其中围棋子的数目,小明将100颗黑色的围棋子放入其中,充分搅拌后随机抽出了20颗,数得其中有5颗黑色的围棋子,根据这些信息可以估计白色围棋子的数目约为( )
A.200颗 B.300颗 C.400颗 D.500颗
6.若,则方程有实根的概率为________.
7.某种福利彩票的中奖概率为0.1%,若某人买这种彩票999次,均未中奖,则此人第1000次买这种彩票中奖的概率为__________.
8.已知冰箱里有4袋牛奶,其中1袋枣味、3袋原味,若小明从中任取两袋,则取到枣味牛奶的概率为__________.
9.某中学从甲、乙两个班中各选出15名学生参加知识竞赛,将他们的成绩(满分100分)进行统计分析,绘制成如图所示的茎叶图.设成绩在88分以上(含88分)的学生为优秀学生,现从甲、乙两班的优秀学生中各取1人,记甲班选取的学生成绩不低于乙班选取得学生成绩记为事件,则事件发生的概率___________.
10.2022年秋季学期,全国各省(区、市)已全面实施新课程新教材.为了加快新课程新教材的实施,促进教考有效衔接,某市教育部门组织该市全体新高一教师在暑假期间进行相关学科培训,培训后举行测试(满分100分).现从该市参加测试的数学老师中抽取了120名老师并统计他们的测试分数,将成绩分成六组:第一组,第二组,…,第六组,得到如图所示的频率分布直方图.
(1)求的值以及这120人中测试成绩在的人数;
(2)若要从第四、五、六组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率.
题组C 培优拔尖练
1.在6月6日第27个全国“爱眼日”即将到来之际,教育部印发《关于做好教育系统2022年全国“爱眼日”宣传教育工作通知》,呼吁青年学生爱护眼睛,保护视力.众所周知,长时间玩手机可能影响视力.据调查,某校学生大约40%的人近视,而该校大约有30%的学生每天玩手机超过2h,这些人的近视率约为50%.现从每天玩手机不超过2h的学生中任意调查一名学生,则该名学生近视的概率为( )
A. B. C. D.
2.独立地重复一个随机试验次,设随机事件发生的频率为,随机事件发生的概率为,有如下两个判断:①如果是单元素集,则;②集合不可能只含有两个元素,其中( )
A.①正确,②正确 B.①错误,②正确
C.①正确,②错误 D.①错误,②错误
3.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( )
A. B.
C. D.
4.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4 dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是( )
A. B. C. D.
5.下述关于频率与概率的说法中,错误的是( )
A.设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品
B.做7次抛硬币的试验,结果3次出现正面,因此,抛一枚硬币出现正面的概率是
C.随机事件发生的频率就是这个随机事件发生的概率
D.利用随机事件发生的频率估计随机事件的概率,如果随机试验的次数超过10000,那么所估计出的概率一定很准确
6.某高中有学生500人,其中男生300人,女生200人,希望获得全体学生的身高信息,按照分层抽样的原则抽取了容量为50的样本,经计算得到男生身高样本均值为170,方差为17;女生身高样本均值为160,方差为30.下列说法中正确的是( )
A.男生样本容量为30
B.每个女生被抽入到样本的概率均为
C.所有样本的均值为166
D.所有样本的方差为46.2
7.已知函数,集合,现从中任意取出若干个元素组成函数的定义域,则函数的值域为的概率为________.
8.若和是定义在同一区间上的两个函数,对任意,都有,则称和是“亲密函数”,设,,若,,则和是“亲密函数”的概率为________.
9.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).
(1)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一全年级中“体育良好”的学生人数;
(2)为分析学生平时的体育活动情况,现从体有成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,恰有1人体育成绩在的概率;
(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在,,三组中,其中a,b,.当数据a,b,c的方差最小时,写出a,b,c的值(结论不要求证明)
10.青少年近视问题备受社会各界广泛关注,某研究机构为了解学生对预防近视知识的掌握情况,对某校学生进行问卷调查,并随机抽取200份问卷,发现其得分(满分:100分)都在区间中,并将数据分组,制成如下频率分布表:
分数 | |||||
频率 | 0.15 | 0.25 | m | 0.30 | 0.10 |
(1)估计这200份问卷得分的平均值(同一组中的数据用该组区间的中点值代表);
(2)用分层抽样的方法从这200份问卷得分在,,内的学生中抽取6人,再从这6人中随机抽取3人进行调查,求这3人来自不同组(3人中没有2人在同一组)的概率.
高中苏教版 (2019)14.2 抽样优秀课后测评: 这是一份高中苏教版 (2019)14.2 抽样优秀课后测评,文件包含第21讲抽样原卷版docx、第21讲抽样解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
高中数学苏教版 (2019)必修 第二册12.1 复数的概念精品课时训练: 这是一份高中数学苏教版 (2019)必修 第二册12.1 复数的概念精品课时训练,文件包含第13讲复数的概念原卷版docx、第13讲复数的概念解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
高中数学苏教版 (2019)必修 第二册11.2 正弦定理优秀课后练习题: 这是一份高中数学苏教版 (2019)必修 第二册11.2 正弦定理优秀课后练习题,文件包含第11讲正弦定理原卷版docx、第11讲正弦定理解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。