初中数学人教版九年级上册24.1.1 圆学案及答案
展开第21讲 动圆问题的探究思路(原卷版)
名师点金:动圆问题是各地中考更关于圆知识考查的热点问题。有关动圆的题目通常以直线相切等位置关系的讨论和形成特殊图形的形式出现。主要以下两种思想来解决这类问题:1.化动为静。2.分类讨论。
典例剖析+针对训练
类型一 一次函数为背景的动圆探究问题
1.(江阴市一模)已知以(0,4)为圆心的⊙M与直线l:yx相切,从相切处开始,⊙M以每秒1个单位的速度沿y轴某一方向匀速运动.
(1)⊙M的半径是 .
(2)若⊙M在运动过程中截直线l所得的弦长为,求⊙M的运动时间.
(3)若直线l同时以每秒个单位的速度沿x轴正方向运动,求⊙M与直线l再次相切时圆心的坐标.
针对训练1
1.(2018•邻水县一模)如图,直线l与x轴、y轴分别相交于A、B两点,已知B(0,),∠BAO=30°,圆心P的坐标为(1,0).⊙P与y轴相切于点O,若将⊙P沿x轴向左移动,当⊙P与该直线相交时,横坐标为整数的P′的个数是( )
A.2 B.3 C.4 D.5
2.(2011秋•泰兴市校级月考)如图,直角坐标系中,有一半径为的动圆⊙M,其圆心M从点(3,6)出发以每秒0.5个单位长度的速度沿y轴方向向下运动,当⊙M与直线y=x相切时,则⊙M运动的时间为 秒.
类型二 三角形背景下的动圆探究问题
典例2(黄冈模拟)如图,一个半径为r的圆形纸片在边长为a的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是( )
A. B. C. D.πr2
针对训练2
3.(2020•浙江自主招生)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),求t值(单位:秒).
4.(沈丘县校级月考)等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动.
(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
(2)现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
①则△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
②若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?是否存在某一时刻,△ABC各边刚好与⊙O都相切?若存在,求出刚好符合条件时两个图形移动了多少时间?若不存在,能否改变AB、BC沿BA、BC方向的速度,使△ABC各边刚好与⊙O都相切.
类型三 四边形背景下的动圆探究问题
典例3(宁波中考)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现( )
A.3次 B.5次 C.6次 D.7次
针对性练习3
5.(亭湖区校级月考)如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2),动点P在直线yx上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与四边形ABCO的边OA所在直线相切时,P点的坐标为 .
6.(苏州模拟)如图,A(5,0),B(3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位长度的速度运动,运动时间t秒.
(1)求点C的坐标;
(2)当∠BCP=15°时,求t的值;
(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.
第二部分 专题提优训练
1.(2022•武汉模拟)如图,在Rt△ABC中,∠B=90°,∠A=30°,AB=6,半径长为的⊙O与边AB,BC相切,切点分别为D,E,若⊙O向右平移t个单位长度后与边AC相切,则t的值是( )
A. B.1 C.2 D.2
2.(2011•济南)如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第 秒.
3.(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为 .
4.(2022•南关区校级模拟)如图.正方形ABCD的边长为8.⊙O的半径为2.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切).则点A到⊙O上的点的距离的最大值为 .
5.(罗平县校级期中)直线AB,CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm,如果⊙P以1cm/秒的速度沿由A向B的方向移动,那么当⊙P的运动时间t(单位:秒)满足什么条件时,⊙P与直线CD相切?
6.(2020秋•玄武区校级月考)如图,P为正比例函数yx图象上的一个动点,⊙P的半径是2.5,设点P的坐标为(x,y).
(1)求⊙P与直线x=2相切时点P的坐标.
(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.
7.(福田区校级期末)如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)当t= (s)时,⊙O与AC所在直线第一次相切;点C到直线AB的距离为 ;
(2)当t为何值时,直线AB与半圆O所在的圆相切;
(3)当△ABC的一边所在直线与圆O相切时,若⊙O与△ABC有重叠部分,求重叠部分的面积.
8.(睢宁县校级月考)如图①,在平面直角坐标系中,点A从点(1,0)出发以每秒1个单位长度的速度沿x轴向右运动,在运动过程中,以OA为一边作菱形OABC,使B、C在第一象限,且∠AOC=60°,连接AC、OB;同时点M从原点O出发,以每秒个单位长度的速度沿对角线OB向点B运动,若以点M为圆心,MA的长为半径画圆,设运动时间为t秒.
(1)当t=1时,判断点O与⊙M的位置关系,并说明理由.
(2)当⊙M与OC边相切时,求t的值.
(3)随着t的变化,⊙M和菱形OABC四边的公共点个数也在变化,请直接写出公共点个数与t的大小之间的对应关系.
9.(高邮市二模)在平面直角坐标系中,矩形OABC的边OA、OC分别落在x轴、y轴上,O为坐标原点,且OA=8,OC=4,连接AC,将矩形OABC对折,使点A与点C重合,折痕ED与BC交于点D,交OA于点E,连接AD,如图①.
(1)求点D的坐标和AD所在直线的函数关系式;
(2)⊙M的圆心M始终在直线AC上(点A除外),且⊙M始终与x轴相切,如图②.
①求证:⊙M与直线AD相切;
②圆心M在直线AC上运动,在运动过程中,能否与y轴也相切?如果能相切,求出此时⊙M与x轴、y轴和直线AD都相切时的圆心M的坐标;如果不能相切,请说明理由.
初中数学人教版九年级上册24.1.1 圆学案: 这是一份初中数学人教版九年级上册24.1.1 圆学案,文件包含九年级数学上册第20讲圆中阴影部分面积计算技巧原卷版-2022-2023学年九年级数学上册常考点数学思想+解题技巧+专项突破+精准提升docx、九年级数学上册第20讲圆中阴影部分面积计算技巧解析版-2022-2023学年九年级数学上册常考点数学思想+解题技巧+专项突破+精准提升docx等2份学案配套教学资源,其中学案共47页, 欢迎下载使用。
初中人教版第二十四章 圆24.1 圆的有关性质24.1.1 圆学案: 这是一份初中人教版第二十四章 圆24.1 圆的有关性质24.1.1 圆学案,文件包含九年级数学上册第18讲构造辅助圆隐圆巧解几何题原卷版-2022-2023学年九年级数学上册常考点数学思想+解题技巧+专项突破+精准提升docx、九年级数学上册第18讲构造辅助圆隐圆巧解几何题解析版-2022-2023学年九年级数学上册常考点数学思想+解题技巧+专项突破+精准提升docx等2份学案配套教学资源,其中学案共32页, 欢迎下载使用。
数学人教版24.1.1 圆学案: 这是一份数学人教版24.1.1 圆学案,文件包含九年级数学上册第17讲圆中两解或多解问题归类剖析原卷版-2022-2023学年九年级数学上册常考点数学思想+解题技巧+专项突破+精准提升docx、九年级数学上册第17讲圆中两解或多解问题归类剖析解析版-2022-2023学年九年级数学上册常考点数学思想+解题技巧+专项突破+精准提升docx等2份学案配套教学资源,其中学案共36页, 欢迎下载使用。