|试卷下载
搜索
    上传资料 赚现金
    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【同步讲义】北师大版数学九年级上册:第6讲 一元二次方程及其求解(配方法、公式法、因式分解法) (原卷版).docx
    • 解析
      【同步讲义】北师大版数学九年级上册:第6讲 一元二次方程及其求解(配方法、公式法、因式分解法) (解析版).docx
    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)01
    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)02
    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)03
    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)01
    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)02
    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)03
    还剩6页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)

    展开
    这是一份【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法),文件包含同步讲义北师大版数学九年级上册第6讲一元二次方程及其求解配方法公式法因式分解法原卷版docx、同步讲义北师大版数学九年级上册第6讲一元二次方程及其求解配方法公式法因式分解法解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    6 一元二次方程及其求解(配方法、公式法、因式分解法)

    课程标准

    1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;
    2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;
    3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.
    4了解配方法的概念,会用配方法解一元二次方程;

    5掌握运用配方法解一元二次方程的基本步骤;

    6.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.

    7理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;

    8正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;

    9通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.

    知识点01  一元二次方程的有关概念

    1.一元二次方程的概念
    通过化简后,只含有    未知数(一元),并且未知数的最高次数是   (二次)的整式方程,叫做一元二次方程.
    注意:识别一元二次方程必须抓住三个条件

    1)整式方程;

    2)含有一个未知数;

    3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.
    2.一元二次方程的一般形式
    一般地,任何一个关于x的一元二次方程,都能化成形如              ,这种形式叫做一元二次方程的一般形式.其中是    二次项,    是二次项系数;    是一次项,    是一次项系数;    是常数项.
    注意:

    (1)只有当时,方程才是一元二次方程;
    (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.
    3.一元二次方程的解
    使一元二次方程左右两边    的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.
    4.一元二次方程根的重要结论

    1)若a+b+c=0,一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.

    2)若a-b+c=0,一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.

    3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.

    知识点02  一元二次方程的解法

    (一)直接开方法解一元二次方程
    1.直接开方法解一元二次方程:
    利用         直接开平方求一元二次方程的解的方法称为直接开平方法.
    2.直接开平方法的理论依据:
    平方根的定义.
    3.能用直接开平方法解一元二次方程的类型有两类:
    形如关于x的一元二次方程,可直接开平方求解.
    ,则;表示为,有两个不等实数根;
    ,则x=O;表示为,有两个相等的实数根;
    ,则方程无实数根.
    形如关于x的一元二次方程,可直接开平方求解,两根是
    .
    注意:

    用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.
    (二)配方法解一元二次方程:
    1.配方法解一元二次方程
    将一元二次方程配成             的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
    2.配方法解一元二次方程的理论依据是公式:                .
    3.用配方法解一元二次方程的一般步骤:
    把原方程化为的形式;
    将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1
    方程两边同时加上一次项系数一半的平方;
    再把方程左边配成一个完全平方式,右边化为一个常数;
    若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.
    注意:

    1)配方法解一元二次方程的口诀:一除二移三配四开方;

    2)配方法关键的一步是配方,即在方程两边都加上一次项系数一半的平方.

    3)配方法的理论依据是完全平方公式
    4.配方法的应用

    1用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.

    2用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.

    3用于求最值:配方法在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.

    4用于证明:配方法在代数证明中有着广泛的应用,我们学习二次函数后还会知道配方法在二次函数中也有着广泛的应用.

    注意:

    配方法在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.
    (三)公式法解一元二次方程

    1一元二次方程的求根公式
    一元二次方程,当            时,           

    2一元二次方程根的判别式

    一元二次方程根的判别式:           
    时,原方程有两个不等的实数根           
    时,原方程有两个相等的实数根           
    时,原方程    实数根.
    3用公式法解一元二次方程的步骤
    用公式法解关于x的一元二次方程的步骤:
    把一元二次方程化为一般形式;
    确定abc的值(要注意符号);
    求出的值;
    ,则利用公式求出原方程的解;
    ,则原方程无实根.
    注意:

    1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.

    2)一元二次方程,用配方法将其变形为:.

    时,右端是正数.因此,方程有两个不相等的实根:.

    时,右端是零.因此,方程有两个相等的实根:.

    时,右端是负数.因此,方程没有实根.

    (四)因式分解法解一元二次方程

    1用因式分解法解一元二次方程的步骤
    1)将方程右边化为   
    2)将方程左边分解为两个一次式的   
    3)令这两个一次式分别为    ,得到两个一元一次方程;
    4)解这两个一元一次方程,它们的解就是原方程的解.
    2常用的因式分解法
    提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.

    注意:
    1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次           

    因式的积;

    2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0

    3)用分解因式法解一元二次方程的注意点:必须将方程的右边化为0方程两边不能同时除以含有未知数的代数式.

    考法01   关于一元二次方程的判定

    【典例1下列方程x25x2022,一定是关于x的一元二次方程的有(       

    A1 B2 C3 D4

    【即学即练】 是关于x的一元二次方程,则a的值是(     

    A B C1 D

    考法02   一元二次方程的一般形式、各项系数的确定

    【典例2将方程2x25x1化为一元二次方程的一般形式,其中二次项系数为2,则一次项系数、常数项分别是(       

    A.-51 B51 C5、-1 D.-5、-1

    【即学即练】将下列一元二次方程化成一般形式后,其中二次项系数是2,一次项系数是,常数项是3的方程是(       

    A B C D

    考法03   一元二次方程的解(根)

    【典例3是关于x的一元二次方程的一个根,则的值为(       

    A0 B2 C4 D6

    【即学即练】若一元二次方程有一个解为,则k为(   

    A B1 C D0

    考法04   用直接开平方法解一元二次方程

    【典例4方程的解为(       

    A B C D

    【即学即练】一元二次方程可转化为两个一元一次方程,其中一个一元一次方程是,则另一个一元一次方程是(       

    A B C D

    考法05   用配方法解一元二次方程

    【典例5用配方法解一元二次方程 x210x110,此方程可化为(       

    A.(x5214 B.(x5214 C.(x52 36 D.(x52 36

    【即学即练】慧慧将方程2x2+4x70通过配方转化为(x+n2p的形式,则p的值为(  )

    A7 B8 C3.5 D4.5

    考法06   配方法在代数中的应用

    【典例6已知三角形的三条边为,且满足,则这个三角形的最大边的取值范围是(       

    Ac8 B5c8 C8c13 D5c13

    【即学即练】已知方程,等号右侧的数字印刷不清楚,若可以将其配方成的形式,则印刷不清楚的数字是(   

    A6 B9 C2 D

    考法07   公式法解一元二次方程

    【典例7已知关于x的一元二次方程ax2bxc0a≠0),下列命题是真命题的有(       

    a2b4c0,则方程ax2bxc0必有实数根;

    b3a2c2a2,则方程ax2bxc0必有两个不相等的实根;

    c是方程ax2bxc0的一个根,则一定有acb10成立;

    t是一元二次方程ax2bxc0的根,则b24ac=(2atb2

    A①② B②③ C①④ D③④

    【即学即练】是下列哪个一元二次方程的根(   

    A B

    C D

    考法08   因式分解法解一元二次方程

    【典例8一元二次方程的根是(       

    A B C D

    【即学即练】一个等腰三角形两边的长分别等于一元二次方程的两个实数根,则这个等腰三角形周长为(       

    A11 B27 C511 D2127

    题组A  基础过关练

    1.把一元二次方程化成一般形式,正确的是(       

    A B C D

    2.若方程是关于x的一元二次方程,则(          

    A Bm2 C D

    3.用配方法解方程时,结果正确的是(       

    A B

    C D

    4.若关于的一元二次方程有实数根,则实数的取值范围是(       

    Ak1 Bk>-1 Ck1k≠0 Dk>-1k≠0

    5.方程的根是(     

    A B

    C D

    6.已知关于x的一元二次方程(x+1)2+m0可以用直接开平方法求解,则m的取值范围是________

    7.若一元二次方程无实数根,则的取值范围是_______

    8.关于x的一元二次方程有两个相等的实数根,则这两个相等的根是x1x2__________________

    题组B  能力提升练

    1.如果关于x的一元二次方程,有一个解是0,那么m的值是(       

    A3 B C D0

    2.用配方法解方程时,配方结果正确的是(       

    A B C D

    3.有关于x的两个方程:ax2+bx+c=0ax2-bx+c=0,其中abc0,下列判断正确的是(       

    A.两个方程可能一个有实数根,另一个没有实数根 B.若两个方程都有实数根,则必有一根互为相反数

    C.若两个方程都有实数根,则必有一根相等 D.若两个方程都有实数根,则必有一根互为倒数

    4.由四个全等的直角三角形和一个小正方形组成的大正方形如图所示.连结,并延长交于点N.若,则的长为(       

    A2 B C D3

    5.已知实数ab满足,则________

    6.如果关于x的方程没有实数根,那么实数m的取值范围是__________

    7.已知方程2x2+bx+a0a≠0)的一个根是a

    (1)2a+b的值;

    (2)若此方程有两个相等的实数解,求出此方程的解.

    8.先阅读,后解题.

    已知,求mn的值.

    解:将左边分组配方:.即

    ,且和为0

    利用以上解法,解下列问题:

    (1)已知:,求xy的值.

    (2)已知abc的三边长,满足为直角三角形,求c

    题组C  培优拔尖练

    1.若方程是关于x的一元二次方程,则m的取值范围是(       

    A B C D

    2.若对于任意实数abcd,定义     adbc,按照定义,若 0,则x的值为(       

    A B C3 D

    3.对于一元二次方程,下列说法:

    ,则

    若方程有两个不相等的实根,则方程必有两个不相等的实根;

    c是方程的一个根,则一定有成立;

    是一元二次方程的根,则其中正确的(   

    A.只有①②④ B.只有①②③ C①②③④ D.只有①②

    4.如图,在矩形ABCD中,AB=14BC=7MN分别为ABCD的中点,PQ均为CD边上的动点(点Q在点P左侧),点GMN上一点,且PQ=NG=5,则当MP+GQ=13时,满足条件的点P有(       

    A4 B3 C2 D1

    5.已知代数式A3x2x1B4x23x7,则A____B(填>,<或=).

    6.若时,代数式的为0,则代数式________

    7.已知:关于x的方程kx24k3x3k30

    (1)求证:无论k取何值,方程都有实根;

    (2)x1是该方程的一个根,求k的值;

    (3)若方程的两个实根均为正整数,求k的值(k为整数).

    8.如果一元二次方程的两根相差1,那么该方程称为1方程.例如x2x01方程

    (1)判断下列方程是不是1方程,并说明理由;

    x25x60

    x2x10

    (2)已知关于x的方程x2m1xm0m是常数)是1方程,求m的值;

    (3)若关于x的方程ax2bx10ab是常数,a0)是1方程,设t10ab2,求t的最大值.

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【同步讲义】北师大版数学九年级上册:第06讲 一元二次方程及其求解(配方法、公式法、因式分解法)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map