搜索
    上传资料 赚现金
    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题03 角平分线的性质综合题(原卷版).docx
    • 解析
      专题03 角平分线的性质综合题(解析版).docx
    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)01
    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)02
    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)03
    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)01
    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)02
    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)03
    还剩5页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)

    展开
    这是一份【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训),文件包含专题03角平分线的性质综合题原卷版docx、专题03角平分线的性质综合题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    专题03 角平分线的性质(综合题)

    易错点拨

    知识点:角的轴对称性
    1.角的轴对称性
    (1)角是轴对称图形,角的平分线所在的直线是它的对称轴.
    (2)角平分线上的点到角两边的距离相等.
    (3)角的内部到角两边距离相等的点在角的平分线上.
    易错题专训

    一.选择题
    1.(2021秋•西宁期末)如图,在△ABC中,AD是高,AE是角平分线,AF是中线.则下列结论错误的是(  )

    A.BF=CF B.∠BAF=∠CAF
    C.∠B+∠BAD=90° D.S△ABC=2S△ABF
    【易错思路引导】根据三角形的角平分线、中线和高的概念及三角形的面积公式判断.
    【规范解答】解:∵AF是△ABC的中线,
    ∴BF=CF,A说法正确,不符合题意;
    ∵AD是高,
    ∴∠ADB=90°,
    ∴∠B+∠BAD=90°,C说法正确,不符合题意;
    ∵AE是角平分线,
    ∴∠BAE=∠CAE,B说法错误,符合题意;
    ∵BF=CF,
    ∴S△ABC=2S△ABF,D说法正确,不符合题意;
    故选:B.
    【考察注意点】本题考查的是三角形面积、三角形的角平分线、中线和高,掌握三角形面积公式及三角形中线、高、角平分线的概念是解题的关键.
    2.(2022春•城阳区期中)如图,在△ABC中,∠BAC和∠ABC的角平分线交于点O,AB=6cm,BC=9cm,△ABO的面积为18cm2,则△BOC的面积为(  )cm2.

    A.27 B.54 C. D.108
    【易错思路引导】过O点作OD⊥AB于D点,OE⊥BC于E点,如图,根据角平分线的性质得到OD=OE,然后根据三角形面积公式得到S△BOC:S△AOB=BC:AB.
    【规范解答】解:过O点作OD⊥AB于D点,OE⊥BC于E点,如图,
    ∵OB平分∠ABC,
    ∴OD=OE,
    ∴S△BOC:S△AOB=BC:AB,
    ∴S△BOC=×18=27(cm2).
    故选:A.

    【考察注意点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.
    3.(2022春•龙岗区校级期中)如图,AP平分∠CAB,PD⊥AC于点D,若PD=6,点E是边AB上一动点,关于线段PE叙述正确的是(  )

    A.PE=6 B.PE>6 C.PE≤6 D.PE≥6
    【易错思路引导】过P点作PH⊥AB于H,如图,根据角平分线的性质得到PH=PD=6,然后根据垂线段最短可对各选项进行判断.
    【规范解答】解:过P点作PH⊥AB于H,如图,
    ∵AP平分∠CAB,PD⊥AC,PH⊥AB,
    ∴PH=PD=6,
    ∵点E是边AB上一动点,
    ∴PE≥6.
    故选:D.

    【考察注意点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.
    4.(2022春•开江县期末)如图,△ABC的三边AB、BC、CA长分别是30、40、50,∠ABC和∠ACB的角平分线交于O,则S△ABO:S△BCO:S△CAO等于(  )

    A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
    【易错思路引导】过O分别作OE⊥AB,FO⊥BC,OD⊥AC,根据角平分线的性质可得EO=DO=FO,再根据三角形的面积公式可得S△ABO:S△BCO:S△CAO=30:40:50=3:4:5.
    【规范解答】解:过O分别作OE⊥AB,FO⊥BC,OD⊥AC,
    ∵BO是∠ABC平分线,
    ∴EO=FO,
    ∵CO是∠ACB平分线,
    ∴EO=DO,
    ∴EO=DO=FO,
    ∵S△ABO=AB•EO,S△BCO=CB•FO,S△CAO=AC•DO,
    ∴S△ABO:S△BCO:S△CAO=30:40:50=3:4:5.
    故选:D.

    【考察注意点】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.
    5.(2022春•亭湖区校级期末)如图,∠ABC、∠ACE的平分线BP、CP交于点P,PF⊥BD,PG⊥BE,垂足分别为F、G,下列结论:①S△ABP:S△BCP=AB:BC;②∠APB+∠ACP=90°;③∠ABC+2∠APC=180°,其中正确的结论有(  )

    A.0个 B.1个 C.2个 D.3个
    【易错思路引导】根据角平分线的性质得到PF=PG,根据三角形的面积公式即可得到①正确;过P作PH⊥AC于H,根据角平分线的定义和外角定理得到∠CAF=∠ABC+∠ACB=2∠PAF,∠PAF=∠ABC+∠APB,求得∠ACB=2∠APB,于是得到∠APB+∠ACP=90°,故②正确;根据四边形的内角和定理得到∠ABC+∠FPG=180°,根据全等三角形的性质得到∠APF=∠APG,∠CPH=∠CPG,于是得到∠ABC+2∠APC=180°,故③正确.
    【规范解答】解:∵PB平分∠ABC,PF⊥BD,PG⊥BE,
    ∴PF=PG,
    ∴S△ABP:S△BCP=AB•PF:BC•PG=AB:BC,故①正确;
    过P作PH⊥AC于H,
    ∵PC平分∠ACE,
    ∴PH=PG,
    ∴PF=PH,
    ∴PA平分∠CAF,
    ∵BP平分∠ABC,
    ∴∠CAF=∠ABC+∠ACB=2∠PAF,∠PAF=∠ABC+∠APB,
    ∴∠ACB=2∠APB,
    ∵∠ACB+∠ACE=180°,
    ∴=∠APB+∠ACP=90°,故②正确;
    ∵PF⊥AB,PG⊥BC,
    ∴∠ABC+90°+∠FPG+90°=360°,
    ∴∠ABC+∠FPG=180°,
    在Rt△PAF和Rt△PAH中,

    ∴Rt△PAF≌Rt△PAH(HL),
    ∴∠APF=∠APG,
    同理:Rt△PCH≌Rt△PCG(HL),
    ∴∠CPH=∠CPG,
    ∴∠FPG=2∠APC,
    ∴∠ABC+2∠APC=180°,故③正确;
    故选:D.

    【考察注意点】本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    6.(2021秋•十堰期末)如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DEA=∠AGH;②∠DAE=(∠ABD﹣∠ACE);③∠AGH=∠BAE+∠ACB;④S△AEB:S△AEC=AB:AC,其中正确的结论有(  )个.

    A.1 B.2 C.3 D.4
    【易错思路引导】如图,①根据直角三角形的性质即可得到∠DEA=∠AGH;②根据角平分线的定义得∠EAC=∠BAC,由三角形的内角和定理得∠DAE=90°﹣∠AED,变形可得结论;③根据三角形的内角和和外角的性质即刻得到∠AGH=∠BAE+∠ACB;④根据三角形的面积公式即可得到S△AEB:S△AEC=AB:CA.
    【规范解答】解:如图,AE交GF于M,

    ①∵AD⊥BC,FG⊥AE,
    ∴∠ADE=∠AMF=90°,
    ∴∠DEA+∠DAE=∠AGH+∠GAM=90°,
    ∴∠DEA=∠AGH,故①正确;
    ②∵AE平分∠BAC交BC于E,
    ∴∠EAC=∠BAC,
    ∴∠DAE=90°﹣∠AED,
    =90°﹣(∠ACE+∠EAC),
    =90°﹣(∠ACE+∠BAC),
    =(180°﹣2∠ACE﹣∠BAC),
    =(∠ABD﹣∠ACE),
    故②正确;
    ③∵∠DAE=∠F,∠FDG=∠FME=90°,
    ∴∠AGH=∠MEF,
    ∵∠MEF=∠CAE+∠ACB,
    ∴∠AGH=∠CAE+∠ACB,
    ∴∠AGH=∠BAE+∠ACB,故③正确;
    ④∵AE平分∠BAC交BC于E,
    ∴点E到AB和AC的距离相等,
    ∴S△AEB:S△AEC=AB:AC,故④正确;
    故选:D.
    【考察注意点】本题考查了角平分线的定义和性质,直角三角形的性质,三角形的面积公式,三角形外角的性质,正确的识别图形是解题的关键.
    二.填空题
    7.(2022春•岳麓区校级期末)如图,在△ABC中,∠C=90°,以点A为圆心,任意长为半径作弧,分别交边AC、AB于点M、N,分别以点M、N为圆心,以大于MN为半径作弧,两弧交于点P,射线AP交BC于点D,若CD=2,AB=5,则△ABD的面积为  5 .

    【易错思路引导】作DE⊥AB于E,根据角平分线的性质得到DE=DC=2,根据三角形的面积公式计算即可.
    【规范解答】解:作DE⊥AB于E,

    由基本作图可知,AP平分∠CAB,
    ∵AP平分∠CAB,∠C=90°,DE⊥AB,
    ∴DE=DC=2,
    ∴△ABD的面积=×AB×DE=×5×2=5,
    故答案为:5.
    【考察注意点】本题考查基本作图、角平分线的性质定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题.
    8.(2021秋•伊川县期末)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D.如果AC=10cm,那么AE+DE等于  10cm .

    【易错思路引导】根据角平分线的性质得出DE=CE,求出AE+DE=AC,再代入求出答案即可.
    【规范解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,
    ∴DE=CE,
    ∵AC=10cm,
    ∴AE+DE=AE+CE=AC=10cm,
    故答案为:10cm.
    【考察注意点】本题考查了角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.
    9.(2022春•零陵区期末)如图,已知△ABC的周长是16,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D且OD=2,△ABC的面积是 16 .

    【易错思路引导】过O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线性质求出OE=OD=OF=2,根据△ABC的面积等于△ACO的面积、△BCO的面积、△ABO的面积的和,即可求出答案.
    【规范解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,

    ∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,
    ∴OE=OD,OD=OF,
    即OE=OF=OD=2,
    ∴△ABC的面积是:S△AOB+S△AOC+S△OBC
    =×AB×OE+×AC×OF+×BC×OD
    =×2×(AB+AC+BC)
    =×2×16=16,
    故答案为:16.
    【考察注意点】本题考查了角平分线性质,三角形的面积,主要考查学生运用定理进行推理的能力.
    10.(2021秋•垦利区期末)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为 6 .

    【易错思路引导】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.
    【规范解答】解:作PF⊥AD于F,PG⊥BC于G,
    ∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,
    ∴PF=PE=3,
    ∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,
    ∴PG=PE=3,
    ∵AD∥BC,
    ∴两平行线AD与BC间的距离为PF+PG=6,
    故答案为:6.

    【考察注意点】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    11.(2021秋•江州区期末)△ABC中,∠ABC和∠ACB的平分线交于点O,OD⊥BC于D,△ABC的面积18,AB=6,AC=8,OD=2,则BC的长是 4 .

    【易错思路引导】过点O作OE⊥AB,OF⊥AC,利用角平分线的性质可知OE=OF=OD=2,利用三角形的面积公式可解得结果.
    【规范解答】解:过点O作OE⊥AB,OF⊥AC,连接AO,
    ∵OB,OD为∠ABC和∠ACB的平分线,OD⊥BC,
    ∴OE=OF=OD=2,
    ∵S△ABC=S△ABO+S△BOC+S△AOC


    ∵△ABC的面积18,
    ∴=18,
    解得:BC=4,
    故答案为:4.

    【考察注意点】本题主要考查了角平分线的性质,作出恰当的辅助线,利用角平分线的性质是解答此题的关键.
    12.(2022春•菏泽期末)如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为  4 .

    【易错思路引导】如图,过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ.利用全等三角形的性质证明EF=EM+FN,可得结论.
    【规范解答】解:如图,过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ.

    ∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,
    ∴PM=PK,PK=PN,
    ∴PM=PN,
    ∵∠C=∠PMC=∠PNC=90°,
    ∴四边形PMCN是矩形,
    ∴四边形PMCN是正方形,
    ∴CM=PM,
    ∴∠MPN=90°,
    在△PMJ和△PNF中,

    ∴△PMJ≌△PNF(SAS),
    ∴∠MPJ=∠FPN,PJ=PF,
    ∴∠JPF=∠MPN=90°,
    ∵∠EPF=45°,
    ∴∠EPF=∠EPJ=45°,
    在△PEF和△PEJ中,

    ∴△PEF≌△PEJ(SAS),
    ∴EF=EJ,
    ∴EF=EM+FN,
    ∴△CEF的周长=CE+EF+CF=CE+EM+CF+FN=2CM=2PM,
    ∵S△ABC=•BC•AC=(AC+BC+AB)•PM,
    ∴PM=2,
    ∴△ECF的周长为4,
    故答案为:4.
    【考察注意点】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,证明EF=EM+FN是本题的突破点.
    三.解答题(共8小题)
    13.(2021秋•顺平县期末)如图(1),三角形ABC中,BD是∠ABC的角平分线.
    (1)若∠A=80°,∠ABC=58°,则∠ADB= 71 °.
    (2)若AB=6,设△ABD和△CBD的面积分别为S1和S2,已知,则BC的长为  9 .
    (3)如图(2),∠ACE是△ABC的一个外角,CF平分∠ACE,BD的延长线与CF相交于点F,CG平分∠ACB,交BD于点H,连接AF,设∠BAC=α,求∠BHC与∠HFC的度数(用含α的式子表示).


    【易错思路引导】(1)根据角平分线的定义和三角形的内角和定理即可得到结论;
    (2)如图(1),过D作DE⊥BC于E,DF⊥AB于F,根据角平分线的性质得到DF=DE,根据三角形的面积公式即可得到结论;
    (3)根据角平分线的定义得到∠HBC=∠ABC,∠HCB=∠ACB,根据三角形的内角和定理即可得到结论.
    【规范解答】解:(1)∵∠ABC=58°,BD是∠ABC的角平分线,
    ∴∠ABD=ABC=29°,
    ∴∠ADB=180°﹣∠A﹣∠ABD=71°,
    故答案为:71;
    (2)如图(1),过D作DE⊥BC于E,DF⊥AB于F,
    ∵BD是∠ABC的角平分线,
    ∴DF=DE,
    ∴===,
    ∴BC=9,
    故答案为:9;
    (3)解:在△ABC中,由∠BAC=α,可得∠ABC+∠ACB=180°﹣α,
    ∵BD平分∠ABC,CG平分∠ACB
    ∴∠HBC=∠ABC,∠HCB=∠ACB,
    ∴∠HBC+∠HCB=∠ABC+∠ACB=(∠ABC+∠ACB)
    =(180°﹣α)
    =90°﹣α,
    在△BHC中,∠BHC=180°﹣(∠HBC+∠HCB)
    =180°﹣(90°﹣α)
    =90°+α,
    ∵∠ACE为△ABC的外角,设∠ABC=β,
    ∴∠ACE=∠ABC+∠BAC=α+β,
    ∵BD平分∠ABC,CF平分∠ACE,
    ∴∠FBE=∠ABC=β∠FCE=∠ACE,
    ∴∠HFC=∠FCE﹣∠FBE=(α+β)﹣β=α.

    【考察注意点】本题考查了角平分线的性质,三角形的面积的计算,三角形的内角和定理,正确地作出辅助线是解题的关键.
    14.(2021秋•安庆期末)教材呈现,如图是华师版八年级上册数学教材第96页的部分内容.

    定理证明:请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.
    定理应用:如图②,△ABC的周长是10,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD=3,求△ABC的面积.

    【易错思路引导】定理证明:利用AAS判定△OEP≌△ODP可得PE=PD;
    定理应用:过O作OE⊥AB与E,OF⊥AC于F,利用角平分线的性质可得EO=DO,OF=DO,然后再利用面积的计算方法可得答案.
    【规范解答】定理证明:证明:∵OC是∠AOB的角平分线,
    ∴∠AOP=∠BOP,
    ∵PD⊥OA,PE⊥OB,
    ∴∠PEO=∠PDO=90°,
    在△OEP和△ODP中,

    ∴△OEP≌△ODP(AAS),
    ∴PE=PD;

    定理应用:解:过O作OE⊥AB与E,OF⊥AC于F,
    ∵BO、CO分别平分∠ABC和∠ACB,
    ∴EO=DO,OF=DO,
    ∵OD=3,
    ∴EO=FO=3,
    ∵△ABC的周长是10,
    ∴AB+BC+AC=10,
    ∴△ABC的面积:AB•EO+AC•FO+CB•DO=(AB+AC+BC)=×10=15.

    【考察注意点】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.
    15.(2021秋•虎林市期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是152cm2,AB=20cm,AC=18cm,求DE的长.

    【易错思路引导】根据S△ABC=S△ABD+S△ACD,再利用角平分线的性质即可解决问题.
    【规范解答】解:∵AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,
    ∴DE=DF,
    ∵S△ABC=S△ABD+S△ACD,
    ∴S△ABC=,
    ∵△ABC面积是152cm2,AB=20cm,AC=18cm,
    ∴152=,
    ∴10DE+9DF=152,
    ∵DE=DF,
    ∴19DE=152,
    ∴DE=8cm.
    【考察注意点】本题主要考查了三角形面积的计算方法,以及角平分线的性质,熟记性质是解题的关键.
    16.(2021秋•密山市校级期末)如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

    【易错思路引导】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.
    【规范解答】证明:∵BD为∠ABC的平分线,
    ∴∠ABD=∠CBD,
    在△ABD和△CBD中,

    ∴△ABD≌△CBD(SAS),
    ∴∠ADB=∠CDB,
    ∵点P在BD上,PM⊥AD,PN⊥CD,
    ∴PM=PN.
    【考察注意点】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.
    17.(2021秋•东昌府区校级月考)如图,P是∠AOB内部的一点,PE⊥OA,PF⊥OB垂足分别为E,F.PE=PF.Q是OP上的任意一点,QM⊥OA,QN⊥OB,垂足分别为点M和N,QM与QN相等吗?请证明.

    【易错思路引导】根据到角的两边的距离相等的点再叫的平分线上可得OP是∠AOB的角平分线,再根据角的平分线上的点到角的两边的距离相等可得QM=QN.
    【规范解答】解:QM=QN,
    理由如下:
    ∵PE⊥OA,PF⊥OB垂足分别为E,F,PE=PF,
    ∴OP是∠AOB的角平分线,
    ∵QM⊥OA,QN⊥OB,
    ∴QM=QN.
    【考察注意点】此题主要考查了角平分线的性质和判定,关键是掌握角的平分线上的点到角的两边的距离相等.
    18.(2017秋•东昌府区期末)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.
    已知:如图,AM,BN,CP是△ABC的三条角平分线.
    求证:AM、BN、CP交于一点.
    证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为点D,E,F.
    ∵O是∠BAC角平分线AM上的一点( 已知 ),
    ∴OE=OF( 角平分线上的一点到这个角的两边的距离相等 ).
    同理,OD=OF.
    ∴OD=OE( 等量代换 ).
    ∵CP是∠ACB的平分线( 已知 ),
    ∴O在CP上( 角的内部到角的两边距离相等的点在这个角的平分线上 ).
    因此,AM,BN,CP交于一点.

    【易错思路引导】根据角平分线的性质解答即可.
    【规范解答】证明:设AM,BN交于点O,过点O分别作OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为点D,E,F.
    ∵O是∠BAC角平分线AM上的一点(已知),
    ∴OE=OF(角平分线上的一点到这个角的两边的距离相等).
    同理,OD=OF.
    ∴OD=OE(等量代换).
    ∵CP是∠ACB的平分线(已知),
    ∴O在CP上(角的内部到角的两边距离相等的点在这个角的平分线上).
    因此,AM,BN,CP交于一点;
    故答案为:已知;角平分线上的一点到这个角的两边的距离相等;等量代换;已知;角的内部到角的两边距离相等的点在这个角的平分线上.
    【考察注意点】此题考查角平分线的性质,关键是根据角平分线的两个性质解答.
    19.(2019秋•呼和浩特期末)已知:如图,AD∥BC,DB平分∠ADC,CE平分∠BCD,交AB于点E,BD于点O.求证:点O到EB与ED的距离相等.

    【易错思路引导】根据平行线的性质和角平分线的定义得到∠DOC=90°,根据等腰三角形的三线合一证明即可.
    【规范解答】证明:∵AD∥BC,
    ∴∠ADC+∠BCD=180°,
    ∵DB平分∠ADC,CE平分∠BCD,
    ∴∠ODC+∠OCD=90°,
    ∴∠DOC=90°,
    ∴∠DOC=∠BOC,
    又∵CO=CO,∠DCO=∠BCO,
    ∴△DCO≌△BCO(ASA)
    ∴CB=CD,
    ∴OB=OD,
    ∴CE是BD的垂直平分线,
    ∴EB=ED,又∠DOC=90°,
    ∴EC平分∠BED,
    ∴点O到EB与ED的距离相等.

    【考察注意点】本题考查的是平行线的性质、角平分线的性质,掌握平行线的判定定理和性质定理是解题的关键.
    20.(2020秋•江宁区月考)我们把从一个角的顶点引出把这个角分成两个完全相同的角的射线叫做这个角的平分线.如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD或BE叫做∠ABC的“三等分线”.

    【基础运用】
    (1)已知△ABC,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,若∠BAC=α(α<60°),则BM、CN所在直线的夹角的度数为   ​​​​​​​.(用含α的代数式表示)
    【概念提升】
    (2)在△ABC中,∠A=70°,∠B=45°,若∠B的三等分线与∠C的外角的三等分线交于点D,则∠BDC的度数为  或或或 ​​.
    【问题解决】
    ∠EAB是四边形ABCD的外角,设∠B=α、∠C=β.
    (3)如图②,∠ADC和∠EAB的三等分线DN、AN相交于点N(∠CDN=∠ADC,∠BAN=∠EAB),求证:∠N=(α+β)﹣120°;
    (4)如图③,∠ADC和∠EAB的n等分线分别相交于点P1、P2、P3、…、Pn﹣1,则∠P1+∠P2+∠P3+…+∠Pn﹣1=  (用含α、β、n的代数式表示).
    【易错思路引导】(1)设∠ABC=β,∠ACB=γ,直线BM与直线CN相交于点F,根据角平分线的性质和三角形的外角性质用含α的代数式即可表示出BM、CN所在直线的夹角的度数;
    (2)画出图形,∠ABC的三等分线与∠ACB的外角的三等分线的交点有四个,分别为D1、D2、D3和D4,根据角平分线的性质和三角形的外角性质即可求出∠BD1C、∠BD2C、∠BD3C和∠BD4C的度数;
    (3)根据角平分线的性质和三角形的外角性质即可证明;
    (4)根据角平分线的性质和三角形的外角性质用含α、β、n的代数式表示出∠P1、∠P2、∠P3、…、∠Pn﹣1,再将它们加在一起即可计算出∠P1+∠P2+∠P3+…+∠Pn﹣1.
    【规范解答】解:(1)如图所示,设∠ABC=β,∠ACB=γ,直线BM与直线CN相交于点F,
    由题意可得,β+γ=180°﹣α,
    ∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,
    ∴,,
    ∵BM、CN分别是∠PBD、∠PCE的角平分线,
    ∴,,
    ∴,,
    ∴∠F=180°﹣∠CBF﹣∠BCF=180°﹣=180°﹣=,
    故答案为:;
    (2)如图所示,∠ABC的三等分线与∠ACB的外角的三等分线的交点为D1、D2、D3和D4,
    ∵∠A=70°,∠ABC=45°,
    ∴∠ACB=180°﹣70°﹣45°=65°,
    ∴∠ACE=180°﹣∠ACB=115°,
    ∴∠BD1C=180°﹣15°﹣65°﹣=,
    ∴∠BD2C=∠BD1C﹣15°=,∠BD3C=∠BD1C﹣,
    ∴∠BD4C=∠BD3C﹣15°=,
    故答案为:或或或;
    (3)证明:如图所示,

    ∵∠1=∠2+∠N,
    ∴∠N=∠1﹣∠2,
    ∵,,
    ∴﹣=120°﹣(∠BAD+∠ADC),
    ∵∠BAD+∠ADC+α+β=360°,
    ∴∠BAD+∠ADC=360°﹣(α+β),
    ∴∠N=120°﹣(∠BAD+∠ADC)=120°﹣=(α+β)﹣120°;
    (4)∵∠P1AE=∠P1+∠P1DA,
    ∴∠P1=∠P1AE﹣∠P1DA

    =(180°﹣∠BAD)﹣∠ADC



    =,
    同理可得,,,……,
    ∴∠P1+∠P2+∠P3+…+∠Pn﹣1
    =(+……++)(α+β﹣180°)
    =(α+β﹣180°)
    =,
    故答案为:.
    【考察注意点】本题考查了角平分线的性质和三角形的外角性质,利用角平分线的性质进行角的计算是解答本题的关键
    相关试卷

    数学6.1 函数精品课堂检测: 这是一份数学6.1 函数精品课堂检测,文件包含专题16一次函数综合题综合题原卷版docx、专题16一次函数综合题综合题解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    【同步讲义】苏科版数学八年级上册:专题13 两点间的距离公式综合题 讲义(导图+易错点拨+易错题专训): 这是一份【同步讲义】苏科版数学八年级上册:专题13 两点间的距离公式综合题 讲义(导图+易错点拨+易错题专训),文件包含专题13两点间的距离公式综合题原卷版docx、专题13两点间的距离公式综合题解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    初中数学苏科版八年级上册4.3 实数优秀课后复习题: 这是一份初中数学苏科版八年级上册4.3 实数优秀课后复习题,文件包含专题12实数的运算综合题原卷版docx、专题12实数的运算综合题解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【同步讲义】苏科版数学八年级上册:专题03 角平分线的性质综合题 讲义(导图+易错点拨+易错题专训)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map