![期末模拟测试卷二-高一数学下学期考点分类培优讲义(苏教版必修第二册)(原卷版)第1页](http://img-preview.51jiaoxi.com/3/3/14742912/1-1692671771174/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![期末模拟测试卷二-高一数学下学期考点分类培优讲义(苏教版必修第二册)(原卷版)第2页](http://img-preview.51jiaoxi.com/3/3/14742912/1-1692671771198/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![期末模拟测试卷二-高一数学下学期考点分类培优讲义(苏教版必修第二册)(原卷版)第3页](http://img-preview.51jiaoxi.com/3/3/14742912/1-1692671771220/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![期末模拟测试卷二-高一数学下学期考点分类培优讲义(苏教版必修第二册)(解析版)第1页](http://img-preview.51jiaoxi.com/3/3/14742912/0-1692671768462/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![期末模拟测试卷二-高一数学下学期考点分类培优讲义(苏教版必修第二册)(解析版)第2页](http://img-preview.51jiaoxi.com/3/3/14742912/0-1692671768517/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![期末模拟测试卷二-高一数学下学期考点分类培优讲义(苏教版必修第二册)(解析版)第3页](http://img-preview.51jiaoxi.com/3/3/14742912/0-1692671768544/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023-2024高一数学下学期考点分类培优讲义(苏教版必修第二册)
期末模拟测试卷二-2023-2024高一数学下学期考点分类培优讲义(苏教版必修第二册)
展开
这是一份期末模拟测试卷二-2023-2024高一数学下学期考点分类培优讲义(苏教版必修第二册),文件包含期末模拟测试卷二-高一数学下学期考点分类培优讲义苏教版必修第二册原卷版docx、期末模拟测试卷二-高一数学下学期考点分类培优讲义苏教版必修第二册解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
班级 姓名 学号 分数 期末模拟测试卷(二)(时间:120分钟,满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题绐岀的四个选项中,只有一项是符合题目要求的.1.已知复数(i为虚数单位),则( )A. B. C. D.【答案】B【解析】解:.故选:B.2.已知向量,若,则( )A. B. C. D.4【答案】A【解析】因为,,所以,故选:A3.已知一个圆锥的体积为,其侧面积是底面积的2倍,则其底面半径为( )A. B.3 C. D.【答案】C【解析】设底面半径为,高为,母线为,如图所示:则圆锥的体积,所以,即,,则,又,所以,故.故选:C.4.已知,则( )A. B. C. D.【答案】D【解析】因为,故,所以,故x为第二或第四象限角,则,故,即,所以,故选:D5.生男孩和生女孩的概率相等时,一个家庭有三个孩子,至少两个是女孩的概率为( )A. B. C. D.【答案】C【解析】一个家庭有三个孩子的所有情况是(男男男)、(男男女)、(男女男)、(男女女)、(女男男)、(女男女)、(女女男)、(女女女)共种,至少个是女孩的情况有(男女女)、(女男女)、(女女男)、(女女女)共种,∴所求概率为,故选:C.6.在中,根据下列条件解三角形,则其中有两个解的是( )A. B.C. D.【答案】D【解析】对于A选项,,,,又,由正弦定理得:,,三角形三边确定,此时三角形只有一解,不合题意;对于B选项,,,,由余弦定理得:,三角形三边唯一确定,此时三角形有一解,不合题意;对于C选项,,三边均为定值,三角形唯一确定,故选项C不合题意;对于D选项,,,,由正弦定理得:,,,,有两解,符合题意,故选:D.7.如图,点在的内部,,是边,的中点(,,三点不共线),,,则向量与的夹角大小为( )A.105° B.120° C.135° D.150°【答案】B【解析】连接,如下图所示.因为,是边,的中点,所以,且,所以,所以,解得.又因为,所以.则向量与的夹角大小为120°,故选:B.8.已知三棱锥的四个顶点在球的球面上,,是边长为的正三角形,三棱锥的体积为,为的中点,则过点的平面截球所得截面面积的取值范围是( )A. B. C. D.【答案】A【解析】设在底面上的射影为,因为,所以为的中心,由题可知,,由,解得在正中,可得.从而直角在中解得.进而可得,,,因此正三棱锥可看作正方体的一角,正方体的外接球与三棱锥的外接球相同,正方体对角线的中点为球心.记外接球半径为,则,因为球的最大截面圆为过球心的圆,所以过的平面截球所得截面的面积最大为;又为中点,由正方体结构特征可得由球的结构特征可知,当垂直于过的截面时,截面圆半径最小为所以.因此,过的平面截球所得截面的面积范围为.故选:A. 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知A(k∈Z),则A的值可以是( )A.3 B.﹣3 C.1 D.﹣1【答案】AD【解析】∵当k为偶数时,A3,∵k为奇数时,A1,∴或.故选:AD.10.分别抛掷两枚质地均匀的骰子(六个面上的点数分别为1,2,3,4,5,6),设事件“第一枚骰子的点数为奇数”,事件“第二枚骰子的点数为偶数”,则( )A.M与N互斥 B. C.M与N相互独立 D.【答案】BCD【解析】解:由题意,第一枚骰子的点数与第二枚骰子的点数互不影响,故事件与事件为相互独立事件,故A错误,C正确;,故B正确;,故D正确.故选:BCD.11.如图,四边形是圆柱的轴截面,是圆柱的一条母线,已知,,,则下列说法正确的是( )A.圆柱的侧面积为 B.圆柱的侧面积为C.圆柱的表面积为 D.圆柱的表面积为【答案】BC【解析】因为,,所以,即,又因为,所以圆柱的侧面积是,圆柱的表面积是,故选:BC12.如图,△ABC的三个内角A,B,C对应的三条边长分别是a,b,c,∠ABC为钝角,BD⊥AB,,c=2,则下列结论正确的有( )A. B.BD=2C. D.△CBD的面积为【答案】AC【解析】解:由,得:,又角为钝角,解得:,由余弦定理,得:,解得,可知为等腰三角形,即,所以,解得,故正确,可得,在中,,得,可得,故错误,,可得,可得,故正确,所以的面积为,故错误.故选:AC. 三、填空题:本题共4小题,每小题5分,共计20分.13.设复数,其中是虚数单位,则的虚部是______.【答案】0【解析】,所以,则的虚部为0故答案为:014.在正方体中,分别为,的中点,则直线和夹角的余弦值为___________.【答案】【解析】如图所示,连接、,分别为,的中点,所以,所以和夹角就是与所成的角,而是正三角形,所以,所以,直线和夹角的余弦值为.故答案为:.15.如图,在四面体中,,AC与BD所成的角为60°,M、N分别为AB、CD的中点,则线段MN的长为______.【答案】或【解析】取的中点,连接、,、分别为、的中点,且,同理可得且,为异面直线与所成的角或其补角,则或.在中,.若,则为等边三角形,此时,;若,由余弦定理可得.综上所述,或.故答案为:或.16.已知向量、满足,在上的投影(正射影的数量)为,则的最小值为_________.【答案】【解析】设向量、的夹角为,在上的投影为,可得出,即,而,所以,因为所以,即,故答案为:.四、解答题:本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.已知平面向量.(1)若,求;(2)若,求与夹角的余弦值.【答案】(1)5; (2)【解析】(1)向量,由得:,解得,即,则,所以.(2)当时,,,则,所以与夹角的余弦值是.18.已知的内角A,B,C的对边分别为a,b,c,满足(1)求角B的大小;(2)若,求的值;(3)若,,求边a的值.【答案】(1);(2);(3).【解析】(1)由正弦定理有:,而为的内角,∴,即,由,可得,(2),∵,,可得,而,∴,(3)由余弦定理知:,又,,,∴,可得.19.2022年2月4日至20日,第24届冬季奥林匹克运动会在北京成功举办.某学校根据该校男女生人数比例,使用分层抽样的方法随机调查了200名学生,统计他们观看开幕式的时长(单位:)情况,样本数据按照,,…,进行分组,得到如图所示的频率分布直方图.(1)求a的值并估计该校学生观看开幕式时长的平均数(每组数据以该组区间的中点值为代表)和中位数;(2)已知样本中有的男生观看开幕式时长小于80,观看开幕式时长不小于80的男女生人数相等,估计该校男生与女生的人数之比.【答案】(1),平均数和中位数分别为78.4,77.5; (2).【解析】(1)由,所以.平均数为.设这200名学生观看开幕式时长的中位数为m,由频率分布直方图可知,且,解得.估计该校学生观看开幕式时长的平均数和中位数分别为78.4,77.5.(2)由频率分布直方图可知样本中观看开幕式时长不小于80的人数为.由题意知这80人中有一半,即40人是男生,又因为观看开幕式时长小于80的男生占男生人数的,故这40名男生占样本中所有男生人数的,因此样本中男生人数为120,女生人数为80,因为样本是用分层抽样的方法得到的,故估计该校男生与女生的人数之比为.20.如图,在梯形ABCD中,ADBC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC.(1)证明:CD⊥平面PAC;(2)若E为PA的中点,求证:BE平面PCD;(3)若直线PC与平面ABCD成角为45°,求三棱锥A﹣PCD的体积.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】解:(1)证明:PA⊥平面ABCD,则PA⊥CD,又由CD⊥PC,而PA∩PC=A,则CD⊥平面PAC;(2)取PD的中点F,连接EF,E是PA的中点,F是PD的中点,则EFAD且EFAD,又由AB⊥BC,AB=BC,则∠BAC=45°,则有∠CAD=45°,又由CD⊥平面PAC,则CD⊥AC,则△ACD为等腰直角三角形,又由AB=BC=1,则AC,ADAC=2,必有EFAD=1,而ADBC且BC=1,则EFBC且EF=BC,故四边形EFCB是平行四边形,必有BECF,又由BE不在平面PCD上,但CF在平面PCD内,则有BE平面PCD;(3)根据题意,若直线PC与平面ABCD成角为45°,即∠PCA=45°,则有PA=AC,VA﹣PCD=VD﹣PACDC×S△PAC(). 21.在中,、、分别是角、、所对的边,已知,,且.(1)求角的大小;(2)若的面积为,求的值.(3)求周长的取值范围. 【答案】(1);(2);(3).【解析】(1)由已知条件可得,则,,故;(2)由三角形的面积公式可得,,由余弦定理可得,因此,;(3)由正弦定理可得,故,,所以,,,所以,,则,所以,,所以,.因此,的周长的取值范围是.22.已知函数,其中.(1)求使得的取值范围;(2)为锐角三角形,O为其外心,,令,求实数t的取值范围.【答案】(1)(2)【解析】(1)由题意得:.令,得即,故x的取值范围为.(2),则,又,则,由正弦定理,可知,则∴又为锐角三角形,则.则,∴
相关试卷
这是一份期末模拟测试卷一-2023-2024高一数学下学期考点分类培优讲义(苏教版必修第二册),文件包含期末模拟测试卷一-高一数学下学期考点分类培优讲义苏教版必修第二册原卷版docx、期末模拟测试卷一-高一数学下学期考点分类培优讲义苏教版必修第二册解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份期中模拟测试卷二-2023-2024高一数学下学期考点分类培优讲义(苏教版必修第二册),文件包含期中模拟测试卷二-高一数学下学期考点分类培优讲义苏教版必修第二册原卷版docx、期中模拟测试卷二-高一数学下学期考点分类培优讲义苏教版必修第二册解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份期中模拟测试卷一-2023-2024高一数学下学期考点分类培优讲义(苏教版必修第二册),文件包含期中模拟测试卷一-高一数学下学期考点分类培优讲义苏教版必修第二册原卷版docx、期中模拟测试卷一-高一数学下学期考点分类培优讲义苏教版必修第二册解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)