所属成套资源:【重难点讲义】浙教版数学七年级下册章节分类讲义+重难点练习+检测卷
【重难点讲义】浙教版数学七年级下册-期末专项复习4 七下各地期末试卷压轴题选题练习
展开
这是一份【重难点讲义】浙教版数学七年级下册-期末专项复习4 七下各地期末试卷压轴题选题练习,文件包含期末专项复习4七下各地期末试卷压轴题选题练习原卷版docx、期末专项复习4七下各地期末试卷压轴题选题练习解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
期末专项复习4 七下各地期末试卷压轴题选题练习1.(2022春•丽水期末)如图,在长方形ABCD中,AB=a厘米,AD=b厘米,E为BC的中点,动点P从点A开始,按A→B→C→D的路径运动,速度为2厘米/秒,设点P的运动时间为t秒.(1)当点P在AB边上运动时,请用含a,t的代数式表示PB的长;(2)若a=6,b=4,则t为何值时,直线PD把长方形ABCD的周长分成2:3两部分;(3)连结PD,PE,DE,若t=2时,三角形PED的面积恰好为长方形ABCD面积的五分之一,试探求a,b之间的关系式.2.(2022春•嘉兴期末)小王同学在学习完全平方公式时,发现a﹣b,a+b,a2+b2,ab这四个代数式之间是有联系的,于是他在研究后提出了以下问题:(1)已知a+b=4,a2+b2=10,求ab的值.(2)已知m﹣=3,求m+的值.(3)如图,长方形ABCD中,AB=6cm,BC=8cm,正方形AEHG、正方形EBKF和正方形NKCM都在它的内部,且BK>KC.记AE=a,CM=b,若a2+b2=18cm2,求长方形PFQD的面积.请解决小王同学提出的这三个问题.3.(2022春•定海区期末)我国著名数学家曾说:数无形时少直觉,形少数时难入微,数形结合思想是解决问题的有效途径.请阅读材料完成:(1)算法赏析:若x满足(1﹣x)(x﹣5)=2,求(1﹣x)2+(x﹣5)2的值.解:设(1﹣x)=a,(x﹣5)=b,则(1﹣x)(x﹣5)=ab=2,a+b=(1﹣x)+(x﹣5)=﹣4.∴(1﹣x)2+(x﹣5)2=a2+b2….请继续完成计算.(2)算法体验:若x满足(30﹣x)(x﹣20)=﹣580,求(30﹣x)2+(x﹣20)2的值;(3)算法应用:如图,已知数轴上A、B、C表示的数分别是m、10、13.以AB为边作正方形ABDE,以AC为边作正方形ACFG,延长ED交FC于P.若正方形ACFG与正方形ABDE面积的和为117,求长方形AEPC的面积.4.(2022春•北仑区期末)数学活动:认识算两次把同一个量用两种不同的方法计算两次,进而建立等量关系解决问题,这种方法在数学上称为算两次.例如:在学习整式乘法过程中,我们用两种不同的方法计算如图1中最大的正方形面积验证了完全平公式:(a+b)2=a2+2ab+b2.(1)如图2,将长为m,宽为n的四个大小、形状完全相同的小长方形按如图所示拼成一个大正方形,用两种不同的方法计算阴影部分的面积可以得出等式 .(2)如图3,棱长为x的实心大正方体切除一个棱长为y的小正方体.①剩余部分按如图所示继续切割为甲、乙、丙三个长方体,它们的体积可以用含x、y的整式分别表示为 、 、 ;②利用①中的结果以及算两次的方法,因式分解:x3﹣y3;③若x2﹣3x﹣1=0,求x3﹣的值.5.(2022春•滨江区期末)已知,(a,b都是正数).(1)计算:;(2)若x=y,说明a=b的理由;(3)设,且M为正整数,试用等式表示a,b之间的关系. 6.(2022春•柯桥区期末)我们规定:分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,==1+,==+=2+.(1)将假分式化为一个整式与一个真分式的和;(2)将假分式化成一个整式与一个真分式的和的形式为:=a+m+,求m、n的值;并直接写出当整数a为何值时,分式为正整数;(3)自然数A是的整数部分,则A的数字和为 .(把组成一个数的各个数位上的数字相加,所得的和,就叫做这个数的数字和.例如:126的数字和就是1+2+6=9). 7.(2022春•婺城区期末)目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300mL和500mL的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要104元,购买2瓶甲和3瓶乙免洗手消毒液需要111元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校购买散装免洗手消毒液进行分装,现需将6000mL的散装免洗手消毒液全部装入最大容量分别为300mL和500mL的两种空瓶中,两种空瓶均需装,且每瓶均装满,通过计算列出所需两种空瓶数量的购买方案.(3)已知该校在校师生共1970人,平均每人每天需使用10mL的免洗手消毒液.若校方采购甲、乙两种免洗手消毒液共花费5000元,且两种都必须购买,则这批消毒液最多可使用多少天?8.(2022春•乐清市期末)在乐清某校的压花拓展课上,甲、乙两位同学每小时能共做7幅作品A,甲、乙同时开始制作,当甲做了28幅作品A时,乙做了21幅.(1)求甲、乙每小时各做多少幅作品A.(2)学校组织义拍资助西部贫困学生的活动,甲、乙两位同学计划共同完成30幅作品A参与义拍,并同时从13:00开始制作.(不考虑休息时间,每人做完一幅作品后才能做下一幅).①若甲完成的数量比乙完成的2倍少6幅,求在几时几分恰好全部完成.②因义拍实际需要,现增加10幅作品B分配给甲、乙两位同学,并要求尽早完成制作,已知甲、乙每小时分别能做6幅和4幅作品B,请你结合方案评价表直接在表格中写出一种作品A,B的分配数量方案.作品类型作品A作品B分配给甲的数量 分配给乙的数量 方案评价表方案等级完成时间评分合格18:26~18:361分良好18:16~18:262分优秀18:16前3分 9.(2022春•杭州期末)某体育用品商场销售A、B两款足球,售价和进价如表:类型进价(元/个)售价(元/个)A款m120B款n90若该商场购进10个A款足球和20个B款足球需2000元;若该商场购进20个A款足球和30个B款足球需3400元.(1)求m和n的值;(2)某校在该商场一次性购买A款足球x个和B款足球y个,共消费3600元,那么该商场可获利多少元?(3)为了提高销量,商场实施:“买足球送跳绳”的促销活动:“买1个A款足球送1根跳绳,买3个B款足球送2根跳绳”,每根跳绳的成本为10元,某日售卖两款足球总计盈利600元(统计购买B款足球的数量为3的倍数),那么该日销售A、B两款足球各多少个? 10.(2022春•西湖区期末)现要在长方形草坪中规划出3块大小,形状一样的小长方形(图中阴影部分)区域种植鲜花.(1)如图1,大长方形的相邻两边长分别为60m和45m,求小长方形的相邻两边长.(2)如图2,设大长方形的相邻两边长分别为a和b,小长方形的相邻两边长分别为x和y.①1个小长方形的周长与大长方形的周长的比值是否为定值?若是,请求出这个值;若不是,请说明理由.②若种植鲜花的面积是整块草坪面积的,求x和y满足的关系式(不含a,b). 11.(2022春•乐清区期末)为了防治“新型冠状病毒”,某小区准备用3500元购买医用口罩和消毒液发放给本小区住户,若医用口罩买800个,消毒液买120瓶,则钱还缺100元;若医用口罩买1000个,消毒液买100瓶,则钱恰好用完.(1)求医用口罩和消毒液的单价;(2)由于实际需要,除购买医用口罩和消毒液外,还需购买单价为6元的N95口罩m个.若需购买医用口罩和N95口罩共1000个,剩余的钱正好买了n瓶消毒液,求m与n的关系式.(用含m的代数式表示n)(3)在(2)的基础上,若100<m<200,求出N95口罩的个数. 12.(2022春•温州期末)某班级学生打算购入多肉植物为教室增添绿色气息.该班学生在市场上了解到甲、乙两种多肉的价格和大小都比较合适,现有如下信息:信息1:购买5个甲和1个乙共需38元.信息2:购买2个甲和3个乙共需36元.(1)求甲、乙两种多肉每个分别是多少元?(2)若该班同学购买多肉共花费120元,设甲、乙两种多肉分别购买m个,n个(m≥1,n≥1).①用含m的代数式表示n.②若m,n均为偶数,求出所有满足条件的购买方案,并指出哪种购买方案总数量最多. 13.(2022春•宁波期末)我们把形如x+=a+b(a,b不为零),且两个解分别为x1=a,x2=b的方程称为“十字分式方程”.例如x+=4为十字分式方程,可化为x+=1+3,∴x1=1,x2=3.再如x+=﹣6为十字分式方程,可化为x+=(﹣2)+(﹣4),∴x1=﹣2,x2=﹣4.应用上面的结论解答下列问题:(1)若x+=﹣5为十字分式方程,则x1= ,x2= .(2)若十字分式方程x﹣=﹣2的两个解分别为x1=m,x2=n,求的值.(3)若关于x的十字分式方程x﹣=﹣k﹣1的两个解分别为x1,x2(k>0,x1>x2),求的值. 14.(2022春•温州期末)某药店采购部于7月份和8月份分别用2000元和5000元购两批口罩,在进价相同情况下,8月份的数量是7月份购进数量的2倍多50盒,该药店在7、8月份均将当月购进的口罩平均分给甲、乙两家分店销售,并统一规定每盒口罩的标价为30元.(1)求7、8月各购进口罩多少盒?(2)已知7月份两店按标价各卖出a盒后,做优惠促销活动:甲店剩余口罩按标价的八折全部出售;乙店剩余口罩先按标价的九折售出b(b>0)盒后,再将余下口罩按标价七折全部售出,结果利润与甲店相同.①若a+b=30,求a、b的值.②8月份,乙店计划将分到的口罩按标价出售n盒后,剩余口罩全部捐献给医院.若至少捐赠50盒口罩,且预计乙店7、8月份能从这两批口罩销售中获得的总利润为100元,求n的值. 15.(2022春•定海区期末)舟山市疫情防控工作领导小组在5月30日发布了常态化核酸检测工作的通知,6月3日起我市居民进入公共场所须凭7天内核酸采样或检测阴性证明.根据文件要求,学生在校期间每周要组织核酸检测一次,某校积极响应,安排校医甲和教师乙进行核酸采集培训.经过培训后,甲采集的速度是乙的两倍,且甲采集52人用时比乙采集30人用时少2分钟.(1)求甲、乙平均每分钟分别采集多少人?(2)该校七年级学生人数比八年级少18人,其中七年级有7个班,每班m人,八年级有6个班,每班n人,两名采集员各自用了87分钟完成了七、八年级学生核酸采集工作,求m和n的值;(3)该校教职工70人完成核酸采集后要放入10人试管或20人试管中,在保证每个试管不浪费情况下,有哪几种分装方案? 16.(2022春•余姚市校级期末)杨梅是我市特产水果之一,素有“果中珍品”之美誉!六月,正值杨梅成熟上市的时候.某杨梅基地零售批发“荸荠”,“东魁”两种杨梅.已知零售3斤“荸荠”和5斤“东魁”共需95元;零售5斤“荸荠”和8斤“东魁”共需155元,批发价是在零售价的基础上按下表进行打折:不超过100斤100斤~550斤550斤~1000斤1000斤~1550斤1550斤以上不打折九五折九折八折七五折(1)求“荸荠”,“东魁”两种杨梅的零售单价;(2)某水果商打算用12000元全部用于批发购进“东魁”杨梅,最多能购进多少斤?(不需要写出解答过程,直接写出答案就行)(3)现用A,B,C三种不同型号的水果箱共30只,将(2)中购得的杨梅进行装箱.装完所有的杨梅时,每只箱子刚好装满.已知A种型号的水果箱每只能装30斤,B种型号的水果箱每只能装50斤,C种型号的水果箱每只能装100斤,为了方便顾客选择,三种不同型号的水果箱都要有.通过计算说明共有几种装箱方案? 17.(2022春•金东区期末)目前,新型冠状病毒在我国虽可控可防,但不可松懈,因此某校为全校18个班级欲购置规格分别为600mL和300mL的甲、乙两类消毒酒精若干瓶,根据规定,每班需要配备600mL消毒酒精,已知购买2瓶甲类消毒酒精和1瓶乙类消毒酒精需要21元,购买3瓶甲类消毒酒精和4瓶乙类消毒酒精需要44元.(1)求甲、乙两种消毒酒精的单价.(2)若要求分配到1瓶甲类消毒酒精的班级数要比分配到2瓶乙类消毒酒精的班级数的两倍多,且分配到1瓶甲类消毒酒精的班级数不得多于14个,请问有哪几种分配方式?(3)为节约成本,该校对库存散装消毒酒精11720mL自行进行分装,现需购买600mL和300mL的分装瓶若干个,容量为600mL的分装瓶单价为4.5元,容量为300mL的分装瓶单价为2元,已知在自行分装的过程中每分装一瓶都会损耗30mL消毒酒精,请设计一种最为省钱的购买分装瓶方案,并求出金额. 18.(2022春•鄞州区期末)某工厂将一批纸板按甲,乙两种方式进行加工,再用加工出来的长方形A板块和正方形B板块制作成如图所示的底面为正方形的长方体有盖礼盒.设x块纸板按甲方式进行加工,y块纸板按乙方式进行加工.(1)补全表格. x块甲方式加工的纸板y块乙方式加工的纸板A板块2x B板块 \(2)若现共有纸板14块,要使礼盒制作完毕后的A,B板块恰好用完,能做多少个礼盒?(3)若现有B板块4块,纸板a块,要使礼盒制作完毕后的A,B板块恰好用完,则a的最小值为 .(请直接写出答案) 19.(2022春•普陀区期末)如图1,直线AB∥CD,另一直线EF⊥AB分别交AB、CD于M、N,将射线MA绕点M以每秒2°的速度逆时针旋转到MA′,同时射线NC绕点N以每秒3°的速度顺时针旋转到NC′,旋转的时间为t(0<t<60)秒.(1)如图2,当t=12秒时,射线MA′与NC′相交于点P,求∠MPN的度数.(2)如图3,当射线MA′与NC′平行时,求t的值.(3)当射线MA′与NC′互相垂直时,求t的值. 20.(2022春•婺城区期末)如图,已知AB∥CD,直线MN交AB于点M,交CD于点N.点E是线段MN上一点,P,Q分别在射线MA,NC上,连接PE,QE,PF平分∠MPE,QF平分∠CQE.(1)如图1,若PE⊥QE,∠EQN=64°,则∠MPE= °,∠PFQ= °.(2)如图2,求∠PEQ与∠PFQ之间的数量关系,并说明理由.(3)如图3,当PE⊥QE时,若∠APE=150°,∠MND=110°,过点P作PH⊥QF交QF的延长线于点H.将直线MN绕点N顺时针旋转,速度为每秒5°,直线MN旋转后的对应直线为M′N,同时△FPH绕点P逆时针旋转,速度为每秒10°,△FPH旋转后的对应三角形为△F′PH′,当直线MN首次落到CD上时,整个运动停止.在此运动过程中,经过t秒后,直线M′N恰好平行于△F′PH′的一条边,请直接写出所有满足条件的t的值. 21.(2022春•奉化期末)如图1,在△ABC中,∠B=63°,∠BAC=77°,D为AC边上一点,分别过点A、D作BC、AB的平行线交于点E.(1)求∠E的度数.(2)点P为直线AC上的一个动点,过点P作PF∥AE,且PF=AE,连DF.①如图2,当点P在点C的右侧,且∠PFD=27°时,判断DE与DF的位置关系,并说明理由.②在整个运动中,是否存在点P,使得∠PFD=2∠EDF?若存在,请求出∠PFD的度数,若不存在,请说明理由. 22.(2022春•南浔区期末)如图1,已知直线AB∥CD,∠CMN=60°,射线ME从MD出发,绕点M以每秒a度的速度按逆时针方向旋转,到达MC后立即以相同的速度返回,到达MD后继续改变方向,继续按上述方式旋转;射线NF从NA出发,绕点N以每秒b度的速度按逆时针方向旋转,到达NB后停止运动,此时ME也同时停止运动,其中a,b满足方程组.(1)求a,b的值;(2)若NF先运动30秒,然后ME一起运动,设ME运动的时间为t,当运动过程中ME∥NF时,求t的值;(3)如图2,若ME与NF同时开始转动,在ME第一次到达MC之前,ME与NF交于点P.过点P作PQ⊥ME于点P,交直线AB于点Q,则在运动过程中,若设∠NME的度数为m,请求出∠NPQ的度数(结果用含m的代数式表示). 23.(2022春•常山县期末)课本中有一探究活动如下:“商店通常用以下方法来确定两种糖混合而成的什锦糖的价格:设A种糖的单价为a元/千克,B种糖的单价为b元/千克,则m千克A种糖和n千克B种糖混合而成的什锦糖的单价为(平均价).现有甲乙两种什锦糖,均由A,B两种糖混合而成.其中甲种什锦糖由10千克A种糖和10千克B种糖混合而成:乙种什锦糖由100元A种糖和100元B种糖混合而成.你认为哪一种什锦糖的单价较高?为什么?”请你完成下面小明同学的探究:(1)小明同学根据题意,求出甲、乙两种什锦糖的单价分别记为和(用a、b的代数式表示);(2)为了比较甲、乙两种什锦糖的单价,小明想到了将与进行作差比较,即计算﹣的差与0比较来确定大小;(3)经过此探究活动,小明终于悟出了建议父亲选择哪种方式加油比较合算的道理(若石油价格经常波动.方式一:每次都加满:方式二:每次加200元).选择哪种方式?请简要说明理由.
相关试卷
这是一份【重难点讲义】浙教版数学八年级下册-期末专项复习7 八下各地期末试卷压轴题专训,文件包含重难点讲义浙教版数学八年级下册-期末专项复习7八下各地期末试卷压轴题专训原卷版docx、重难点讲义浙教版数学八年级下册-期末专项复习7八下各地期末试卷压轴题专训解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份【重难点讲义】浙教版数学八年级下册-期末专项复习2 八下各地期末试卷选填压轴题训练,文件包含重难点讲义浙教版数学八年级下册-期末专项复习2八下各地期末试卷选填压轴题训练原卷版docx、重难点讲义浙教版数学八年级下册-期末专项复习2八下各地期末试卷选填压轴题训练解析版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。
这是一份【重难点讲义】浙教版数学八年级下册-期末专项复习1 八下各地期末试卷选择、填空中等题60题训练,文件包含重难点讲义浙教版数学八年级下册-期末专项复习1八下各地期末试卷选择填空中等题60题训练原卷版docx、重难点讲义浙教版数学八年级下册-期末专项复习1八下各地期末试卷选择填空中等题60题训练解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。