【重难点讲义】浙教版数学八年级上册-第04讲 全等三角形常见辅助线专题探究
展开第4讲 全等三角形常见辅助线专题探究
类型一 倍长中线——构全等
【知识点睛】
倍长中线辅助线方法规律总结
基本图形 | 辅助线 | 条件与结论 | 应用环境 |
延长AD到点E, 使DE=AD,连接CE |
条件:△ABC,AD=BD
结论: △ABD≌△CED(SAS) | ①倍长中线常和△三边关系结合,考察中线长的取值范围 ②倍长中线也可以和其他几何图形结合,考察几何图形的面积问题 |
倍长中线模型的变形——“倍长中线类”模型:
基本图形 | 辅助线 | 条件与结论 | 应用环境 |
延长AD交直线l2于点E,
| 条件:l1∥l2,CD=BD 结论: △ABD≌△ECD(AAS) | 与含有平行元素的几何图形结合考察全等三角形的判定 |
【类题训练】
1.如图,△ABC中,AB=6,AC=4,D是BC的中点,AD的取值范围为 .
2.如图,点D,E分别为△ABC的边AB,AC上的点,连接DE并延长至F,使EF=DE,连接FC.若FC∥AB,AB=5,CF=3,则BD的长等于( )
A.1 B.2 C.3 D.5
3.如图,在△ACD中,∠CAD=90°,AC=6,AD=10,AB∥CD,E是CD上一点,BE交AD于点F,若AB=DE,则图中阴影部分的面积为 .
4.(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;
(2)探究应用:
如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;
(3)问题拓展:
如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.
5.【阅读理解】
课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB的理由是 .
A.SSS B.SAS C.AAS D.HL
(2)求得AD的取值范围是 .
A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7
【感悟】
解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
【问题解决】
(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.
6.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法(如图2),
①延长AD到M,使得DM=AD;
②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;
③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是 ;
方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.
(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.
(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.
类型二 截长补短——造全等
【知识点睛】
截长补短辅助线方法规律总结
基本图形 | 辅助线 | 条件与结论 | 应用环境 |
在AC上截取AE=AD,连接PE | 条件: AP平分∠BAC, 结论: △APD≌△APE(SAS) | ①截长补短类辅助线经常和角平分线同步考察 ②截长补短类全等的目的通常是为了等价线段 |
总结:因为截长补短常得线段相等,所以截长补短经常用于证明三条线段间的数量关系,如AD=BC+EF
【类题训练】
7.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点(不与A,D重合),则AB﹣AC PB﹣PC(填“>”、“<”或“=”).
8.问题背景:
如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.
解法探究:小明同学通过思考,得到了如下的解决方法.
延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,从而可得结论.
(1)请先写出小明得出的结论,并在小明的解决方法的提示下,写出所得结论的理由.
解:线段BE、EF、FD之间的数量关系是:
理由:延长FD到点G,使DG=BE,连接AG.(以下过程请同学们完整解答)
(2)拓展延伸:
如图②,在四边形ABCD中,AB=AD,若∠B+∠D=180°,E、F分别是BC、CD上的点.且∠EAF=∠BAD,则(1)中的结论是否仍然成立?若成立,请再把结论写一写;若不成立,请直接写出你为成立的结论.
9.如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.
(1)求∠APC的度数;
(2)若AE=3,CD=4,求线段AC的长.
10.如图,△ABC是等边三角形,点D是边BC上一个动点(点D不与点B,C重合),连接AD,点E在边AC的延长线上,且DA=DE.
(1)求证:∠BAD=∠EDC:
(2)用等式表示线段CD,CE,AB之间的数量关系,并证明.
11.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
类型三 整体旋转—共线—再全等
【知识点睛】
整体旋转三角形得全等辅助线方法规律总结
基本图形 | 辅助线 | 条件与结论 | 特别提醒 |
将△ABE绕点A逆时针旋转至AB与AD重合,点E的对应点记为点G | 条件:正方形ABCD,∠EAF=45° 结论: ①△AEF≌△AGF(SAS)②EF=BE+DF | 此种类型的辅助线其实是在证明“正方形的半角模型”;但是这种辅助线也可以应用在等边三角形的问题中,此时旋转角度为60°或者120° |
【类题训练】
9.如图,在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,且DE=EB=5,则四边形ABCD的面积 .
10.已知正方形ABCD中,M,N是边BC,CD上任意两点,∠MAN=45°,连结MN.
(1)如图①,请直接写出BM,DN,MN三条线段的数量关系: ;
(2)如图②,过点A作AH⊥MN于点H,求证:AB=AH;
11.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.
(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.
12.如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A顺时针旋转60°得到AP',连接PP',BP'.
(1)用等式表示BP'与CP的数量关系,并证明;
(2)当∠BPC=120°时,
①直接写出∠P'BP的度数为 ;
②若M为BC的中点,连接PM,用等式表示PM与AP的数量关系,并证明.
类型四 连接线段——得全等
【知识点睛】
连接线段得△全等辅助线方法规律总结
基本图形 | 辅助线 | 条件与结论 | 结论应用 |
连接AD | 条件:AB=AC,BD=CD 结论: △ABD≌△ACD(SSS) | 此种类型的辅助线虽然最简单,但是也最常见,常用来证明角相等 |
【类题训练】
13.如图,已知:,,,,则( )
A. B. C.或 D.
14.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.
【课后综合练习】
1.[方法呈现]
(1)如图①,△ABC中,AD为中线,已知AB=3,AC=5,求中线AD长的取值范围.
解决此问题可以用如下方法:
延长AD至点E,使DE=AD,连接CE,则易证△DEC≌△DAB,得到EC=AB=3,则可得AC﹣CE<AE<AC+CE,从而可得中线AD长的取值范围是 .
[探究应用]
(2)如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系,并写出完整的证明过程.
(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.
2.阅读理解
(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC;
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.
3.(1)如图①,OP是∠MON的平分线,点A为OM上一点,点B为OP上一点.请你利用该图形在ON上找一点C,使△COB≌△AOB,请在图①画出图形.参考这个作全等三角形的方法,解答下列问题:
(2)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你写出FE与FD之间的数量关系,并说明理由;
(3)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,在(2)中所得结论是否仍然成立?请你直接作出判断,不必说明理由.
4.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 .
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.
5.如图,已知在四边形ABCD中,BD是的平分线,.2 求证:.
6.如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD交BD的延长线于点E.求证:BD=2CE.
【重难点讲义】浙教版数学八年级上册-第03讲 全等三角形常见模型专题探究: 这是一份【重难点讲义】浙教版数学八年级上册-第03讲 全等三角形常见模型专题探究,文件包含第03讲全等三角形常见模型专题探究原卷版docx、第03讲全等三角形常见模型专题探究解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
【重难点讲义】浙教版数学七年级下册-第12讲 分式计算之整体思想专题探究: 这是一份【重难点讲义】浙教版数学七年级下册-第12讲 分式计算之整体思想专题探究,文件包含第12讲分式计算之整体思想专题探究原卷版docx、第12讲分式计算之整体思想专题探究解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
【重难点讲义】浙教版数学七年级下册-第08讲 乘法公式的应用专题探究: 这是一份【重难点讲义】浙教版数学七年级下册-第08讲 乘法公式的应用专题探究,文件包含第08讲乘法公式的应用专题探究原卷版docx、第08讲乘法公式的应用专题探究解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。