开学活动
搜索
    上传资料 赚现金

    初一数学暑假讲义 第8讲.二元一次方程组的解法及应用.教师版

    初一数学暑假讲义 第8讲.二元一次方程组的解法及应用.教师版第1页
    初一数学暑假讲义 第8讲.二元一次方程组的解法及应用.教师版第2页
    初一数学暑假讲义 第8讲.二元一次方程组的解法及应用.教师版第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初一数学暑假讲义 第8讲.二元一次方程组的解法及应用.教师版

    展开

    这是一份初一数学暑假讲义 第8讲.二元一次方程组的解法及应用.教师版,共10页。
        示例剖析二元一次方程含有两个未知数,并且含未知数的项的最高次数1整式方程叫二元一次方程.  二元一次方程的一般形式:二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的,叫做二元一次方程的解.任何一个二元一次方程都有无数个解.的解,也是的解可以看出有无数个解.判定一个方程是二元一次方程必须同时满足个条件:含有两个未知数——二元含有未知数的项的最高次数为1——一次 方程两边的代数式都是整式——整式方程;未知数的系数不能为0.【例1         下列方程中,是二元一次方程的有哪些? ;⑧ 是二元一次方程,求的值.【解析】       ⑴ ②是二元一次方程;不是,因为只有一个未知数;不是,因为未知项最高次数是2不是,是分式方程;不是,因为有三个未知数;不是,因为未知项的最高次数是2由定义知:,所以 【例2         已知是方程的解,则的值为(       A           B. 1         C. 2            D. 3                                                       北京二中期中 判断下列数值是否是二元一次方程的解.             已知方程.  的代数式表示 的代数式表示【解析】         A.依次将上述解代入方程,使得左右两边等式成立的值即为此方程的解. 是; 不是; 不是; 是,从中可以看到,一个二元一次方程的解不是惟一的,而是有许多组,但每个解都包括两个数值,它们是成对出现的. 对一个二元一次方程进行用含一个未知数的代数式表示另一个未知数的变形,是解二元一次方程组的基础,也可从中探索两个未知数之间的数量关系.     示例剖析二元一次方程组:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组.二元一次方程组不一定由两个二元一次方程合在一起有的方程可以只有一元(一元方程在这里也可看作另一未知数系数为0的二元方程),方程可以超过两个.  是二元一次方程组.二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解.同时它也必须是一个数对,而不能是一个数. 例如二元一次方程的解.注意:一般情况下,一个二元一次方程组只有一一二元一次方程组的解还有另外两种情况:无解或有无数.  【例3         下列方程组中,属于二元一次方程组的是(    A  B  C  D                                                          为解的二元一次方程组是(    A    B    C      D                                                                 【解析】       ⑴ C. 其中A是二次方程,B是分式方程,D含有三个未知数.⑵ C.   【例4         方程组的解是(     A   B     C   D 方程组的解是(    A   B     C   D                                                北京西城实验中学期中)【解析】       B. 直接用加减消元法 D.先变换系数为相反数,再用加减消元法  解二元一次方程的一般步骤:示例剖析 :代入消元法代入消元法是解二元一次方程组的基本方法之一.消元体现了数学研究中转化的重要思想,代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法.用代入法解二元一次方程组的一般步骤: 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如,用另一个未知数如的代数式表示出来,即写成的形式; 代入另一个方程中,消去,得到一个关于的一元一次方程; 解这个一元一次方程,求出的值; 回代求解:把求得的的值代入中求出的值,从而得出方程组的解. 把这个方程组的解写成的形式.  : 解方程组解:由             代入,得    解得       代入    所以方程组的解是.      以上为代入消元法解方程组的一般步骤.:加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法.用加减法解二元一次方程组的一般步骤: 变换系数:把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等; 加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; 解这个一元一次方程,求得一个未知数的值; 回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值; 把这个方程组的解写成的形式.  : 解方程组   解:                      解得         代入        所以方程组的解是. 以上为加减消元法解方程组的一般步骤.代入消元方法的选择: 运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出00的形式,求不出未知数的值. 当方程组中有一个方程的一个未知数的系数是1时,用代入法较简便. 加减消元方法的选择: 一般选择系数绝对值最小的未知数消元; 当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元; 某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用加减消元求解; 当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同,再用加减消元求解. 【例5         用代入消元解方程组:                                                           北京二中期中) 加减消元解方程组:                                                            北京西城期末【解析】           代入代入得,所以方程组的解为     【例6         下列方程组:                                                                (十一学校期中)                                                                (北京西城期末   【解析】                【巩固】 解方程组: 解方程组:【解析】       . 【例7         二元一次方程有两组解是,求的值. 已知是二元一次方程组的解,则的值为(     ).A1           B           C2         D3【解析】       分别代入可得,解得 B. 解代入方程组得 . 【巩固】已知是方程组的解,则______【解析】由题意得 .  .  【例8         若方程组的解是则方程组的解是(    A  B  C  D  三个同学对问题若方程组的解是求方程组的解.提出各自的想法.甲说:这个题目好象条件不够,不能求解;乙说:它们的系数有一定的规律,可以试试;丙说:能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.参考他们的讨论,你认为这个题目的解应该是        【解析】       A   【例9         解方程组: 解方程组: 【解析】 整体叠加法系数对调型方程组,可采用整体相加然后相减的方法速算;,进而可得 此题系数比较复杂,因此需要进行同解变换,得到比较简单的方程,再进行求解.解:两方程相减,得:  两方程相加,得:  得:得:所以,方程的解为: 【例10     解方程组:  解方程组: 【解析】 ,用分别减去此式得 得:,分别去减式可得:    【拓展】满足方程组,求的值.【解析】将个方程相加除以该式分别与两式比较得到:所以   【拓展】满足方程组:,求的值.【解析】,代入,所以所以      
     知识模块一  二元一次方程的基本概念   课后演练 【演练1   已知方程是关于的二元一次方程,求的值.【解析】       根据题意可得:,所以 【演练2   已知都是方程的解,求的值. 在方程中,用含的代数式表示,再用含的代数式表示,若设,分别求出对应的值.【解析】       是方程的解可得,则原方程为是方程的解 可得用含的代数式表示;用含的代数式表示.时,分别为 知识模  二元一次方程组的解  课后演练 【演练3   下列四个解中是方程组的解是    A.        B        C       D 时,关于的二元一次方程组解中的两个未知数的值互为相反   数,求的值. 【解析】       B. 互为相反数,当,则,代入方程组可得  知识模块三  元一次方程的基本解法 课后演练 【演练4   二元一次方程组的解是(      A     B      C      D  方程组的解是       已知方程组的解是,那么 的值为(    A.          B.         C.          D.                                                            (北京五中期中【解析】        C. 用加减消元法解.  用代入消元法解得.  D.  【演练5   解下列方程组:                                                    (北京101中学期中【解析】        【演练6   解方程组:【解析】++++,得代入,得,结合可得同理得

    相关教案

    初一数学暑假讲义 第15讲.乘法公式(二).教师版:

    这是一份初一数学暑假讲义 第15讲.乘法公式(二).教师版,共7页。

    初一数学暑假讲义 第14讲.乘法公式(一).教师版:

    这是一份初一数学暑假讲义 第14讲.乘法公式(一).教师版,共8页。

    初一数学暑假讲义 第11讲.线和角.教师版:

    这是一份初一数学暑假讲义 第11讲.线和角.教师版,共12页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map