八年级数学教学设计:分式的加减法2
展开
这是一份八年级数学教学设计:分式的加减法2,共4页。教案主要包含了作业,板书设计等内容,欢迎下载使用。
八年级数学教学设计:分式的加减法2 教学目标:(1)理解通分的意义,理解最简公分母的意义;(2)掌握分式的通分法则,能熟练掌握通分运算。教学重点:分式通分的理解和掌握。教学难点:分式通分中最简公分母的确定。教学工具:投影仪教学方法:启发式、讨论式教学过程:(一)引入(1)如何计算:由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。(2)如何计算:(3)何计算:引导学生思考,猜想如何求解?(二)新课1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。2.通分的依据:分式的基本性质.3.通分的关键:确定几个分式的最简公分母.通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.根据分式通分和最简公分母的定义,将分式 , , 通分:最简公分母为: ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下:通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。例1 通分:(1) , , ;分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。解:∵ 最简公分母是12xy2,小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.解:∵最简公分母是10a2b2c2,由学生归纳最简公分母的思路。分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。例2 通分:设问:对于分母为多项式的分式通分如何找最简公分母?前面讲的是单项式,对于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。解:∵ 最简公分母是2x(x+1)(x-1),小结:当分母是多项式时,应先分解因式.解:将分母分解因式:x2-4=(x+2)(x-2).4-2x=-2(x-2).∴最简公分母为2(x+2)(x-2).由学生归纳一般分式通分:通分的关键是确定几个分式的最简公分母,其步骤如下:1.将各个分式的分母分解因式;2.取各分母系数的最小公倍数;3.凡出现的字母或含有字母的因式为底的幂的因式都要取;4.相同字母或含字母的因式的幂的因式取指数最大的;5.将上述取得的式子都乘起来,就得到了最简公分母;6. 原来各分式的分子和分母同乘一个适当的整式,使各分式的分母都化为最简公分母。练习:教材P.79中1、2、3.(三)课堂小结1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.六、作业教材P.85中1、2.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。七、板书设计单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
相关教案
这是一份初中数学北师大版八年级下册第五章 分式与分式方程3 分式的加减法教学设计,共4页。
这是一份八年级下册3 分式的加减法教案,共4页。教案主要包含了通分的原则等内容,欢迎下载使用。
这是一份数学3 分式的加减法教案设计,共4页。