


所属成套资源:全国各省中考试题合集100+套助你腾飞
- 2023年湖北省恩施州中考数学试卷 试卷 1 次下载
- 2023年湖北省黄冈市中考数学试卷 试卷 0 次下载
- 2023年湖北省潜江、仙桃天门市中考数学试卷 试卷 0 次下载
- 2023年湖北省随州市中考数学试卷 试卷 1 次下载
- 2023年湖北省十堰市中考数学试卷 试卷 0 次下载
2023年湖北省荆州市中考数学试卷
展开
这是一份2023年湖北省荆州市中考数学试卷,共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖北省荆州市中考数学试卷
一、选择题(本大题共有10个小题,每小题只有唯一正确答案,每小题3分,共30分)
1.(3分)在实数﹣1,,,3.14中,无理数是( )
A.﹣1 B. C. D.3.14
2.(3分)下列各式运算正确的是( )
A.3a2b3﹣2a2b3=a2b3 B.a2•a3=a6
C.a6÷a2=a3 D.(a2)3=a5
3.(3分)观察如图所示的几何体,下列关于其三视图的说法正确的是( )
A.主视图既是中心对称图形,又是轴对称图形
B.左视图既是中心对称图形,又是轴对称图形
C.俯视图既是中心对称图形,又是轴对称图形
D.主视图、左视图、俯视图都是中心对称图形
4.(3分)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是( )
A. B.
C. D.
5.(3分)已知k=(+)•(﹣),则与k最接近的整数为( )
A.2 B.3 C.4 D.5
6.(3分)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )
A.这组数据的平均数 B.这组数据的方差
C.这组数据的众数 D.这组数据的中位数
7.(3分)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )
A.80° B.76° C.66° D.56°
8.(3分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为( )
A. B.
C. D.
9.(3分)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是( )
A.(2,5) B.(3,5) C.(5,2) D.(,2)
10.(3分)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为( )
A.300πm B.200πm C.150πm D.100πm
二、填空题(本大题共6个小题,每小题3分,共18分)
11.(3分)若|a﹣1|+(b﹣3)2=0,则= .
12.(3分)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD=5,则DE= .
13.(3分)某校为了解学生对A,B,C,D四类运动的参与情况,随机调查了本校80名学生,让他们从中选择参与最多的一类,得到对应的人数分别是30,20,18,12.若该校有800名学生,则估计有 人参与A类运动最多.
14.(3分)如图,∠AOB=60°,点C在OB上,OC=2,P为∠AOB内一点.根据图中尺规作图痕迹推断,点P到OA的距离为 .
15.(3分)如图,无人机在空中A处测得某校旗杆顶部B的仰角为30°,底部C的俯角为60°,无人机与旗杆的水平距离AD为6m,则该校的旗杆高约为 m.(≈1.73,结果精确到0.1)
16.(3分)如图,点A(2,2)在双曲线y=(x>0)上,将直线OA向上平移若干个单位长度交y轴于点B,交双曲线于点C.若BC=2,则点C的坐标是 .
三、解答题(本大题共有8个小题,共72分)
17.(8分)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.
18.(8分)已知关于x的一元二次方程kx2﹣(2k+4)x+k﹣6=0有两个不相等的实数根.
(1)求k的取值范围;
(2)当k=1时,用配方法解方程.
19.(8分)如图,BD是等边△ABC的中线,以D为圆心,DB的长为半径画弧,交BC的延长线于E,连接DE.求证:CD=CE.
20.(8分)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:cm)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).
组别
身高分组
人数
A
155≤x<160
3
B
160≤x<165
2
C
165≤x<170
m
D
170≤x<175
5
E
175≤x<180
4
根据以上信息回答:
(1)这次被调查身高的志愿者有 人,表中的m= ,扇形统计图中α的度数是 ;
(2)若E组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.
21.(8分)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.
(1)求证:①CD是⊙O的切线;
②△DEF∽△DBA;
(2)若AB=5,DB=6,求sin∠DFE.
22.(10分)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.
(1)求A,B饰品每件的进价分别为多少元?
(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,
①求x的取值范围;
②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
23.(10分)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.
(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;
(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.
①确定△PCF的形状,并说明理由;
②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).
24.(12分)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.
(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是 ;
(2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.
①当点P为抛物线顶点时,求△PBC的面积;
②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
2023年湖北省荆州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共有10个小题,每小题只有唯一正确答案,每小题3分,共30分)
1.(3分)在实数﹣1,,,3.14中,无理数是( )
A.﹣1 B. C. D.3.14
【分析】无理数即无限不循环小数,据此进行判断即可.
【解答】解:实数﹣1,,,3.14中,无理数是,
故选:B.
【点评】本题考查无理数的识别,其定义是基础且重要知识点,必须熟练掌握.
2.(3分)下列各式运算正确的是( )
A.3a2b3﹣2a2b3=a2b3 B.a2•a3=a6
C.a6÷a2=a3 D.(a2)3=a5
【分析】根据合并同类项的方法,以及同底数幂的乘法、除法的运算方法,幂的乘方与积的乘方,逐项判断即可.
【解答】解:∵3a2b3﹣2a2b3=a2b3,
∴选项A运算正确,符合题意;
∵a2•a3=a5,
∴选项B运算错误,不符合题意;
∵a6÷a2=a4,
∴选项C运算错误,不符合题意;
∵(a2)3=a6,
∴选项D运算错误,不符合题意.
故选:A.
【点评】此题主要考查了合并同类项的方法,以及同底数幂的乘法、除法的运算方法,幂的乘方与积的乘方,解答此题的关键是要明确:(1)同底数幂相乘,底数不变,指数相加;(2)同底数幂相除,底数不变,指数相减.
3.(3分)观察如图所示的几何体,下列关于其三视图的说法正确的是( )
A.主视图既是中心对称图形,又是轴对称图形
B.左视图既是中心对称图形,又是轴对称图形
C.俯视图既是中心对称图形,又是轴对称图形
D.主视图、左视图、俯视图都是中心对称图形
【分析】根据组合体的三视图判断即可.
【解答】解:该几何体的主视图是轴对称图形,不是中心对称图形,A选项不符合题意;
该几何体的左视图是轴对称图形,不是中心对称图形,B选项不符合题意;
该几何体的俯视图是中心对称图形,又是轴对称图形,C选项符合题意;
主视图和左视图是轴对称图形,不是中心对称图形,D选项不符合题意;
故选:C.
【点评】本题主要考查几何体的三视图,解题的关键是掌握简单几何体的三视图及轴对称图形、中心对称图形的概念.
4.(3分)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是( )
A. B.
C. D.
【分析】根据题意得到电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),于是得到结论.
【解答】解:∵电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),R、I均大于0,
∴反映电流I与电阻R之间函数关系的图象大致是D选项,
故选:D.
【点评】本题考查反比例函数的应用,解题的关键是学会利用图象信息解决问题,属于中考常考题型.
5.(3分)已知k=(+)•(﹣),则与k最接近的整数为( )
A.2 B.3 C.4 D.5
【分析】根据平方差公式进行计算,然后估算即可.
【解答】解:∵k=(+)•(﹣)=×2=2,
而1.4<<1.5,
∴2.8<2<3,
∴与k最接近的整数,3,
故选:B.
【点评】本题考查估算无理数的大小,平方差公式,解决本题的关键是掌握平方差公式.
6.(3分)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )
A.这组数据的平均数 B.这组数据的方差
C.这组数据的众数 D.这组数据的中位数
【分析】根据平均数、众数和中位数及方差的意义求解即可.
【解答】解:标准差,方差能反映数据的波动程度,
故选:B.
【点评】本题主要考查统计量的选择,解题的关键是掌握平均数、众数和中位数及方差的意义.
7.(3分)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )
A.80° B.76° C.66° D.56°
【分析】延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,得到GK∥CD,推出∠KGM=∠EMB,∠KGN=∠DNF,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质得到∠EMB=33°,∠DNF=33°,即可求出∠EGF的度数.
【解答】解:延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,
∵AB∥CD,
∴GK∥CD,
∴∠KGM=∠EMB,∠KGN=∠DNF,
∴∠KGM+∠KGN=∠EMB+∠DNF,
∴∠EGF=∠EMB+∠DNF,
∵∠ABE=80°,∠E=47°,
∴∠EMB=∠ABE﹣∠E=33°,
同理:∠DNF=33°,
∴∠EGF=∠EMB+∠DNF=33°+33°=66°.
故选:C.
【点评】本题考查平行线的性质,三角形外角的性质,关键是通过作辅助线,由平行线的性质,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质求出∠EMB、∠DNF的度数,即可解决问题.
8.(3分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为( )
A. B.
C. D.
【分析】根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.
【解答】解:设木条长x尺,绳子长y尺,所列方程组为:.
故选:A.
【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
9.(3分)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是( )
A.(2,5) B.(3,5) C.(5,2) D.(,2)
【分析】先根据坐标轴上点的坐标特征求出B点坐标为(0,3),A点坐标为(2,0),则OA=2,OB=3,再根据旋转的性质得∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,然后根据点的坐标的确定方法即可得到点D的坐标.
【解答】解:当x=0时,y=﹣x+3=3,则B点坐标为(0,3);
当y=0时,﹣x+3=0,解得x=2,则A点坐标为(2,0),
则OA=2,OB=3,
∵△AOB绕点A顺时针旋转90°后得到△ACD,
∴∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,
即AC⊥x轴,CD∥x轴,
∴点D的坐标为(5,2).
故选:C.
【点评】本题考查的是一次函数图象上点的坐标特点、一次函数的性质及旋转的性质,熟知图形旋转后对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等是解题的关键.
10.(3分)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为( )
A.300πm B.200πm C.150πm D.100πm
【分析】先根据垂径定理求出AD的长,由题意得OD=OA﹣BD,在Rt△AOD中利用勾股定理即可求出OA的值,然后再利用三角比计算出所对的圆心角的度数,由弧长公式求出的长即可.
【解答】解:如图所示:
∵OB⊥AC,
∴AD=AC=150m,∠AOC=2AOB,
在Rt△AOD中,
∵AD2+OD2=OA2,OA=OB,
∴AD2+(OA﹣BD)2=OA2,
∴+(OA﹣150)2²=OA2,
解得:OA=300m,
∴sin∠AOB==,
∴∠AOB=60°,
∴∠AOC=120°,
∴的长==200πm.
故选:B.
【点评】本题考查的是垂径定理,勾股定理及弧长的计算公式,根据垂径定理得出AD的长,再由勾股定理求出半径是解答此题的关键,同时要熟记圆弧长度的计算公式.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.(3分)若|a﹣1|+(b﹣3)2=0,则= 2 .
【分析】根据绝对值及偶次幂的非负性求得a,b的值,然后代入中计算即可.
【解答】解:|a﹣1|+(b﹣3)2=0,
∵|a﹣1|≥0,(b﹣3)2≥0,
∴a﹣1=0,b﹣3=0,
则a=1,b=3,
那么==2,
故答案为:2.
【点评】本题考查绝对值及偶次幂的非负性和算术平方根的定义,结合已知条件求得a,b的值是解题的关键.
12.(3分)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD=5,则DE= 3 .
【分析】根据直角三角形斜边上的中线的性质得到AB=2CD=10,根据勾股定理得到BC==6,根据三角形中位线定理即可得到结论.
【解答】解:∵CD为Rt△ABC斜边AB上的中线,CD=5,
∴AB=2CD=10,
∵∠ACB=90°,AC=8,
∴BC==6,
∵E为AC的中点,
∴AE=CE,
∴DE是△ABC的中位线,
∴DE=BC=3,
故答案为:3.
【点评】本题考查了直角三角形斜边上的中线,勾股定理,三角形中位线定理,熟练掌握直角三角形的性质是解题的关键.
13.(3分)某校为了解学生对A,B,C,D四类运动的参与情况,随机调查了本校80名学生,让他们从中选择参与最多的一类,得到对应的人数分别是30,20,18,12.若该校有800名学生,则估计有 300 人参与A类运动最多.
【分析】根据用样本估计总体,列出算式计算即可求解.
【解答】解:800×=300(人).
故估计有300人参与A类运动最多.
故答案为:300.
【点评】本题考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
14.(3分)如图,∠AOB=60°,点C在OB上,OC=2,P为∠AOB内一点.根据图中尺规作图痕迹推断,点P到OA的距离为 1 .
【分析】由作图知PE垂直平分OC,CO平分∠AOB,根据线段垂直平分线的性质得到OE=OC=,∠PEO=90°,根据角平分线的定义得到∠POD=∠AOC==30°,根据三角函数的定义得到EP=OE×tan30°=,根据角平分线的性质即可得到结论.
【解答】解:由作图知PE垂直平分OC,PO平分∠AOB,
∴OE=OC=,∠PEO=90°,
∵∠AOB=60°,
∴∠POE=∠AOP==30°,
∴EP=OE×tan30°=,
∵CO平分∠AOB,
∴点P到OA的距离=PE=1.
故答案为:1.
【点评】此题主要考查了作图﹣基本作图.以及角平分线的性质,关键是掌握角平分线的性质.
15.(3分)如图,无人机在空中A处测得某校旗杆顶部B的仰角为30°,底部C的俯角为60°,无人机与旗杆的水平距离AD为6m,则该校的旗杆高约为 13.8 m.(≈1.73,结果精确到0.1)
【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该旗杆的高度.
【解答】解:由题意可得:tan30°=,
解得:BD=2(米),
tan60°=,
解得:DC=6(米),
故该校的旗杆高约为:BC=BD+DC=8≈13.8(米),
故答案为:13.8.
【点评】此题主要考查了解直角三角形的应用﹣仰角俯角,熟练应用锐角三角函数关系是解题关键.
16.(3分)如图,点A(2,2)在双曲线y=(x>0)上,将直线OA向上平移若干个单位长度交y轴于点B,交双曲线于点C.若BC=2,则点C的坐标是 (,2) .
【分析】由题意,点A(2,2),则∠AOx=45°,同时可得双曲线解析式,再作CH⊥x轴,作BG⊥CH,可得∠CBG=45°,又BC=2,再结合双曲线解析式可以得解.
【解答】解:∵点A(2,2)在双曲线y=(x>0)上,
∴2=.
∴k=4.
∴双曲线解析式为y=.
如图,作AD⊥x轴,CH⊥x轴,作BG⊥CH,垂足分别为D、H、G.
∵A(2,2),
∴AD=OD.
∴∠AOD=45°.
∴∠AOB=45°.
∵OA∥BC,
∴∠CBO=180°﹣45°=135°.
∴∠CBG=135°﹣90°=45°.
∴∠CBG=∠BCG.
∵BC=2,
∴BG=CG=.
∴C点的横坐标为.
又C在双曲线y=上,
∴C(,2).
故答案为:(,2).
【点评】本题考查了反比例函数的图象与性质的应用,需要熟练掌握并理解.
三、解答题(本大题共有8个小题,共72分)
17.(8分)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.
【分析】先进行分式的化简,再根据零指数幂,负整数指数幂求出x,y的值,进而代入求值即可.
【解答】解:原式=[﹣]•
=(﹣)•
=•
=,
∵x=()﹣1=2,y=(﹣2023)0=1,
∴原式==2.
【点评】本题考查了分式的化简求值,零指数幂,负整数指数幂,解决本题的关键是准确进行分式化简.
18.(8分)已知关于x的一元二次方程kx2﹣(2k+4)x+k﹣6=0有两个不相等的实数根.
(1)求k的取值范围;
(2)当k=1时,用配方法解方程.
【分析】(1)结合已知条件,根据一元二次方程的定义及根的判别式即可求得k的取值范围;
(2)将k=1代入方程,利用配方法解方程即可.
【解答】解:(1)∵关于x的一元二次方程kx2﹣(2k+4)x+k﹣6=0有两个不相等的实数根,
∴Δ=(2k+4)2﹣4k(k﹣6)>0,且k≠0,
解得:k>﹣且k≠0;
(2)当k=1时,
原方程为x2﹣(2×1+4)x+1﹣6=0,
即x2﹣6x﹣5=0,
移项得:x2﹣6x=5,
配方得:x2﹣6x+9=5+9,
即(x﹣3)2=14,
直接开平方得:x﹣3=±
解得:x1=3+,x2=3﹣.
【点评】本题考查一元二次方程的定义,根的判别式及配方法解一元二次方程,(1)中需特别注意二次项的系数不为0.
19.(8分)如图,BD是等边△ABC的中线,以D为圆心,DB的长为半径画弧,交BC的延长线于E,连接DE.求证:CD=CE.
【分析】根据等边三角形的性质得到BD⊥AC,∠ACB=60°,求得∠DBC=30°,根据等腰三角形的性质得到∠E=∠DBC=30°,求得∠E=∠2=30°,根据等腰三角形的判定定理即可得到结论.
【解答】证明:∵BD是等边△ABC的中线,
∴BD⊥AC,∠ACB=60°,
∴∠DBC=30°,
∵BD=DE,
∴∠E=∠DBC=30°,
∵∠CDE+∠E=∠ACB=60°,
∴∠E=∠2=30°,
∴CD=CE.
【点评】本题考查了等边三角形的性质,等腰三角形的判定和性质,熟练掌握等边三角形的性质是解题的关键.
20.(8分)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:cm)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).
组别
身高分组
人数
A
155≤x<160
3
B
160≤x<165
2
C
165≤x<170
m
D
170≤x<175
5
E
175≤x<180
4
根据以上信息回答:
(1)这次被调查身高的志愿者有 20 人,表中的m= 6 ,扇形统计图中α的度数是 54° ;
(2)若E组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.
【分析】(1)由A、B、D、E四组的人数除以所占百分比得出这次被调查身高的志愿者人数,即可解决问题;
(2)画树状图,求得有12种等可能的结果,其中刚好抽中两名女志愿者的结果有2种,再由概率公式求解即可.
【解答】解:(1)这次被调查身高的志愿者有:(3+2+5+4)÷(1﹣30%)=20(人),
∴m=20×30%=6,
扇形统计图中α的度数是:360°×=54°,
故答案为:20,6,54°;
(2)画树状图如下:
共有12种等可能的结果,其中刚好抽中两名女志愿者的结果有2种,
∴P(刚好抽中两名女志愿者)==.
【点评】本题考查了树状图法求概率以及频数分布表和扇形统计图等知识,树状图法可以不重不漏的列举出所有可能发生的情况,适合于两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
21.(8分)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.
(1)求证:①CD是⊙O的切线;
②△DEF∽△DBA;
(2)若AB=5,DB=6,求sin∠DFE.
【分析】(1)①由四边形ABCD是菱形,DH⊥AB,可得∠CDH=∠DHA=90°,CD⊥OD,故CD是⊙O的切线;
②连接HF,由DH为⊙O直径,有∠DFH=90°,可得∠DHF=∠DBA=∠DEF,又∠EDF=∠BDA,从而△DEF∽△DBA;
(2)连接AC交BD于G.由菱形ABCD,BD=6,得AC⊥BD,AG=GC,DG=GB=3,AG==4,故AC=2AG=8,用面积法可得DH=,即得sin∠DEE=sin∠DAH==.
【解答】(1)证明:①∵四边形ABCD是菱形,
∴AB∥CD,
∵DH⊥AB,
∴∠CDH=∠DHA=90°,
∴CD⊥OD,
∵D为⊙O的半径的外端点,
∴CD是⊙O的切线;
②连接HF,
∴∠DEF=∠DHF,
∵DH为⊙O直径,
∴∠DFH=90°,
∴∠DHF=90°﹣∠BDH,
∵∠DHB=90°,
∴∠DBA=90°﹣∠BDH,
∴∠DHF=∠DBA=∠DEF,
∵∠EDF=∠BDA,
∴△DEF∽△DBA;
(2)解:连接AC交BD于G.
∵菱形ABCD,BD=6,
∴AC⊥BD,AG=GC,DG=GB=3,
在Rt△AGB中,AG==4,
∴AC=2AG=8,
∵S菱形ABCD=AC•BD=AB•DH,
∴DH==,
由△DEF∽△DBA知:∠DFE=∠DAH,
∴sin∠DEE=sin∠DAH===.
【点评】本题考查圆的综合应用,涉及锐角三角函数,勾股定理,菱形等知识,解题的关键是掌握相似三角形的判定与性质定理.
22.(10分)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.
(1)求A,B饰品每件的进价分别为多少元?
(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,
①求x的取值范围;
②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
【分析】(1)设A种饰品每件的进价为a元,则B种饰品每件的进价为(a﹣1)元,利用数量=总价÷单价,结合用1400元采购A种的件数是630元采购B种件数的2倍,即可得出关于a的分式方程,解之经检验后即可得出每台A种电器的进价,再将其代入(a﹣1)中即可求出每台B种电器的进价;
(2)①利用“计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍“列不等式组可得结论;
②设采购A种饰品x件时的总利润为w元,分两种情况:当120≤x≤150时,当150<x≤210时,分别表示w与x的关系式根据增减性可解答.
【解答】解:(1)设A种饰品每件的进价为a元,则B种饰品每件的进价为(a﹣1)元,
由题意得:=×2,
解得:a=10,
经检验,a=10是所列方程的解,且符合题意,
a﹣1=9,
答:A种饰品每件的进价为10元,则B种饰品每件的进价为9元;
(2)①由题意得:,
解得:120≤x≤210,
∴购进A种饰品件数x的取值范围为:120≤x≤210,且x为整数;
②设采购A种饰品x件时的总利润为w元,
当120≤x≤150时,w=15×600﹣10x﹣9(600﹣x)=﹣x+3600,
∵﹣1<0,
∴w随x的增大而减小,
∴当x=120时,w有最大值是:﹣120+3600=3480,
当150<x≤210时,w=15×600﹣[10×150+10×60%(x﹣150)]﹣9(600﹣x)=3x+3000,
∵3>0,
∴w随x的增大而增大,
∴当x=210时,w有最大值是:3×210+3000=3630,
∵3630>3480,
∴w的最大值是3630,此时600﹣x=600﹣210=390,
即当采购A种饰品210件,B种饰品390件,商铺获利最大,最大利润为3630元.
【点评】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
23.(10分)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.
(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;
(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.
①确定△PCF的形状,并说明理由;
②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).
【分析】(1)根据新定义,画出等联角即可;
(2)①△PCF是等腰直角三角形,过点C作CN⊥BE交BE的延长线于N,由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,证明四边形ABNC为正方形,进而证明Rt△CME≌Rt△CNE,得出∠PCF=45°,即可求解;
②过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,则∠R=∠A=90°.证明△APC≌△RFP,得出AP=BR=FR,在Rt△BRF 中,BR2+FR2=BF2,,进而证明四边形BRFQ为正方形,则BQ=QF=k,由FQ∥CN,得出△AEF∽△NEC,根据相似三角形的性质得出,根据 PE=PM+ME即可.
【解答】解:(1)作图如下:(方法不唯一)
(2)①△PCF是等腰直角三角形.理由为:
如图,过点C作CN⊥BE交BE的延长线于N.
由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,
∵AC=AB,∠A=∠PBD=∠N=90°,
∴四边形ABNC为正方形,
∴CN=AC=CM,
又∵CE=CE,
∴Rt△CME≌Rt△CNE(HL),
∴∠3=∠4,
而∠1+∠2+∠3+∠4=90°,∠CPF=90°,
∴∠PCF=∠2+∠3=∠CFP=45°,
∴△PCF是等腰直角三角形.
②如图,过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,
则∠R=∠A=90°,
∵∠1+∠5=∠5+∠6=90°,
∴∠1=∠6,
由△PCF是等腰直角三角形知:PC=PF,
∴△APC≌△RFP(AAS),
∴AP=FR,AC=PR,
而AC=AB,
∴AP=BR=FR,
在Rt△BRF中,BR2+FR2=BF2,,
∴AP=BR=FR=k,
∴PB=2AP=2k,
∴AB=AP+PB=BN=3k,
∵BR=FR,∠QBR=∠R=∠FQB=90°,
∴四边形BRFQ为正方形,BQ=OF=k,
∵FQ⊥BN,CN⊥BN,
∴FQ∥CN,
∴,
而QE=BN﹣NE﹣BQ=3k﹣NE﹣k=2k﹣NE,
∴,
解得:k,
由①知:PM=AP=k,,
∴,
答:等联线AB=3k,线段PE=.
【点评】本题考查了几何新定义,正方形的性质与判定,折叠问题,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,理解新定义,掌握正方形的性质是解题的关键.
24.(12分)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.
(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是 0或2或﹣ ;
(2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.
①当点P为抛物线顶点时,求△PBC的面积;
②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
【分析】(1)y关于x的函数应分一次函数与二次函数两种情况,其中二次函数应分为①与x轴有两个交点且一个交点为原点;②与x轴有一个交点,与y轴有一个交点两种情况讨论;
(2)①如图,设直线l与BC交于点F,待定系数法求得抛物线的解析式为y=﹣x2+2x+8,当x=0时,y=8,得到C(0,8),P(1,9),求得直线BC的解析式为y=﹣2x+8,得到F(1,6),根据三角形的面积公式即可得到结论;
②如图,设直线x=m交x轴于H,由①得,OB=4,AO=2,AB=6,OC=8,AH=2+m,P(m,﹣m2+2m+8),得到PH=﹣m2+2m+8,根据相似三角形的性质得到OD=8﹣2m,根据二次函数的性质即可得到结论.
【解答】解:(1)①当a﹣2=0时,即a=2时,
y关于x的函数解析式为y=3x+,
此时y=3x+与x轴的交点坐标为(﹣,0),
与y轴的交点坐标为(0,);
②当a﹣2≠0时,y关于x的函数为二次函数,
∵二次函数图象抛物线与坐标轴有两个交点,
∴抛物线可能存在与x轴有两个交点,其中一个交点为坐标原点或与x轴有一个交点与y轴一个交点两种情况.
当抛物线与x轴有两个交点且一个为坐标原点时,
由题意得b=0,此时a=0,抛物线为y=﹣2x2+x.
当y=0时,﹣2x2+x=0,
解得x1=0,x2=.
∴其图象与x轴的交点坐标为(0,0)(,0).
当抛物线与x轴有一个交点与y轴有一个交点时,
由题意得,y=(a﹣2)x2+(a+1)x+b所对应的一元二次方程(a﹣2)x2+(a+1)x+b=0有两个相等实数根.
∴Δ=(a+1)2﹣4(a﹣2)×a=0,
解得a=﹣,
此时y=﹣x2+x﹣,
当x=0时,y=﹣,
∴与y轴的交点坐标为(0,﹣),
当y=0时,﹣x2+x﹣=0,
解得x1=x2=,
∴与x轴的交点坐标为(,0),
综上所述,若y关于x的函数y=(a﹣2)x2+(a+1)x+b的图象与坐标轴有两个交点,则a可取的值为2,0,﹣,
故答案为:2或0或﹣;
(2)①如图,设直线l与BC交于点F,
根据题意得,
解得,
∴抛物线的解析式为y=﹣x2+2x+8,
当x=0时,y=8,
∴C(0,8),
∵y=﹣x2+2x+8=﹣(x﹣1)2+9,点P为抛物线顶点,
∴P(1,9),
∵B(4,0),C(0,8),
∴直线BC的解析式为y=﹣2x+8,
∴F(1,6),
∴PF=9﹣6=3,
∴△PBC的面积=OB•PF==6;
②S1﹣S2存在最大值,
理由:如图,设直线x=m交x轴于H,
由①得,OB=4,AO=2,AB=6,OC=8,AH=2+m,P(m,﹣m2+2m+8),
∴PH=﹣m2+2m+8,
∵OD∥PH,
∴△AOD∽△AHP,
∴,
∴,
∴OD=8﹣2m,
∵S1﹣S2=S△PAB﹣S△AOD﹣S△OBC==﹣3m2+8m=﹣3(m﹣)2+,
∵﹣3<0,0<m<4,
∴当m=时,S1﹣S2存在最大值,最大值为.
【点评】本题是二次函数综合题,主要考查了待定系数法求函数的解析式,二次函数与坐标轴的交点问题,相似三角形的判定和性质,三角形的面积的计算,注意当函数没有明确为何函数时,要注意对函数进行分情况讨论.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/6/29 7:56:23;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557
相关试卷
这是一份2018年湖北省荆州市中考数学试卷与解析,共29页。试卷主要包含了选择题,羊二,直金十两;牛二,填空题,解答题等内容,欢迎下载使用。
这是一份2021年湖北省荆州市中考数学试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年湖北省荆州市中考数学试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
