- 2023年湖南省常德市中考数学试卷 试卷 0 次下载
- 2023年湖南省郴州市中考数学试卷 试卷 0 次下载
- 2023年湖南省怀化市中考数学试卷 试卷 0 次下载
- 2023年湖南省娄底市中考数学试卷 试卷 0 次下载
- 2023年湖南省邵阳市中考数学试卷 试卷 0 次下载
2023年湖南省衡阳市中考数学试卷
展开2023年湖南省衡阳市中考数学试卷
一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(3分)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家,若收入500元记作+500元,则支出237元记作( )
A.+237元 B.﹣237元 C.0元 D.﹣474 元
2.(3分)下列长度的各组线段能组成一个三角形的是( )
A.1cm,2cm,3cm B.3cm,8cm,5cm
C.4cm,5cm,10cm D.4cm,5cm,6cm
3.(3分)下面四种化学仪器的示意图是轴对称图形的是( )
A. B. C. D.
4.(3分)作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,其左视图的大致形状是( )
A. B.
C. D.
5.(3分)计算(x3)2的结果正确的是( )
A.x6 B.x6 C.x5 D.x9
6.(3分)据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为( )
A.7.358×107 B.7.358×103 C.7.358×104 D.7.358×106
7.(3分)对于二次根式的乘法运算,一般地,有•=.该运算法则成立的条件是( )
A.a>0,b>0 B.a<0,b<0 C.a≤0,b≤0 D.a≥0,b≥0
8.(3分)如图,在四边形ABCD中,已知AD∥BC.添加下列条件不能判定四边形ABCD是平行四边形的是( )
A.AD=BC B.AB∥DC C.AB=DC D.∠A=∠C
9.(3分)《孙子算经》中有“鸡兔同笼”问题:“今有鸡免同笼,上有三十五头,下有九十四足,问鸡免各几何.”
设有x只鸡,y只兔,依题意,可列方程组为( )
A. B.
C. D.
10.(3分)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为S甲2和S乙2.则S甲2和S乙2的大小关系是( )
测试次数
1
2
3
4
5
甲
5
10
9
3
8
乙
8
6
8
6
7
A.S甲2>S乙2 B.S甲2<S乙2 C.S甲2=S乙2 D.无法确定
11.(3分)我们可以用以下推理来证明“在一个三角形中,至少有一个内角小于或等于60°”.假设三角形没有一个内角小于或等于60°,即三个内角都大于60°.”,则三角形的三个内角的和大于180°.这与“三角形的内角和等于180°”这个定理矛盾,所以在一个三角形中,至少有一个内角小于或等于60°.上述推理使用的证明方法是( )
A.反证法 B.比较法 C.综合法 D.分析法
12.(3分)已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是( )
A.x3<x1<x2<x4 B.x1<x3<x4<x2
C.x1<x2<x3<x4 D.x3<xx<x1<x2
二、填空题(本大题共6个小题,每小题3分,满分18分.)
13.(3分)在平面直角坐标系中,点P(﹣3,﹣2)所在象限是第 象限.
14.(3分)一个布袋中放着3个红球和9个黑球,这两种球除了颜色以外没有任何其他区别.布袋中的球已经搅匀,从布袋中任取1个球,取出红球的概率是 .
15.(3分)已知x=5,则代数式﹣的值为 .
16.(3分)已知关于x的方程x2+mx﹣20=0的一个根是﹣4,则它的另一个根是 .
17.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.以点C为圆心,r为半径作圆,当所作的圆与斜边AB所在的直线相切时,r的值为 .
18.(3分)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 .
三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分,解答应写出文字说明、证明过程或验算步骤.)
19.(6分)计算:|﹣3|++(﹣2)×1.
20.(6分)解不等式组:.
21.(8分)2023年3月27日是第28个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某学校举行了校园安全知识竞赛活动.现从八、九年级中各随机抽取15名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,80分及以上为优秀,共分成四组,A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100),并给出下面部分信息:
八年级抽取的学生竞赛成绩在C组中的数据为:84,84,88
九年级抽取的学生竞赛成绩为:68,77,75,100,80,100,82,86,95,91,100,86,84,94,87.八、九年级抽取的学生竞赛成绩统计表
年级
平均数
中位数
众数
优秀率
八
87
a
98
60%
九
87
86
b
c
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,c= ;
(2)该校八、九年级共500人参加了此次竞赛活动,请你估计该校八、九年级参加此次竞赛活动成绩达到90分及以上的学生人数.
22.(8分)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象相交于点A.
(1)求点A的坐标.
(2)分别以点O、A为圆心,大于OA一半的长为半径作圆弧,两弧相交于点B和点C,作直线BC,交x轴于点D.求线段OD的长.
23.(8分)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度,圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部24米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.
(1)求教学楼AB的高度.
(2)若无人机保持现有高度沿平行于CA的方向,以4米/秒的速度继续向前匀速飞行.求经过多少秒时,无人机刚好离开圆圆的视线EB.
24.(8分)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.
(1)求证:AF=DF.
(2)若AF=,sin∠ABD=,求⊙O的半径.
25.(10分)[问题探究]
(1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.
①求证:PD=PB;
②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;
③探究AQ与OP的数量关系,并说明理由.
[迁移探究]
(2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.
26.(12分)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y轴交于点C,连接AC,过B、C两点作直线.
(1)求a的值.
(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.
(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.
2023年湖南省衡阳市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(3分)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家,若收入500元记作+500元,则支出237元记作( )
A.+237元 B.﹣237元 C.0元 D.﹣474 元
【分析】根据正数和负数表示相反意义的量,收入记为正,可得支出表示方法.
【解答】解:收入500元记作+500元,则支出237元应记作﹣237元,
故选:B.
【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.
2.(3分)下列长度的各组线段能组成一个三角形的是( )
A.1cm,2cm,3cm B.3cm,8cm,5cm
C.4cm,5cm,10cm D.4cm,5cm,6cm
【分析】根据两边之和大于第三边判断即可.
【解答】解:A、∵1+2=3,
∴长度为1cm,2cm,3cm的三条线段不能组成三角形,本选项不符合题意;
B、∵3+5=8,
∴长度为3cm,8cm,5cm的三条线段不能组成三角形,本选项不符合题意;
C、∵4+5<10,
∴长度为4cm,5cm,10cm的三条线段不能组成三角形,本选项不符合题意;
D、∵4+5>6,
∴长度为4cm,5cm,6cm的三条线段能组成三角形,本选项符合题意;
故选:D.
【点评】本题考查的是三角形的三边关系,熟记三角形两边之和大于第三边是解题的关键.
3.(3分)下面四种化学仪器的示意图是轴对称图形的是( )
A. B. C. D.
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【解答】解:A、B,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
C选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;
故选:C.
【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
4.(3分)作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,其左视图的大致形状是( )
A. B.
C. D.
【分析】根据从左边看得到的图形是左视图,可得答案.
【解答】解:从左边看,紫砂壶的壶嘴在正中间,只有选项B符合题意.
故选:B.
【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
5.(3分)计算(x3)2的结果正确的是( )
A.x6 B.x6 C.x5 D.x9
【分析】根据积的乘方和幂的乘方计算方法进行计算即可.
【解答】解:原式==×x3×2=x6.
故选:B.
【点评】本题主要考查积的乘方和幂的乘方的计算方法,是必考的知识点,一定要熟练掌握,并能灵活运用.
6.(3分)据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为( )
A.7.358×107 B.7.358×103 C.7.358×104 D.7.358×106
【分析】利用科学记数法的法则解答即可.
【解答】解:7358万=73580000=7.358×107,
故选:A.
【点评】本题主要考查了科学记数法,表示较大的数,熟练掌握科学记数法的法则是解题的关键.
7.(3分)对于二次根式的乘法运算,一般地,有•=.该运算法则成立的条件是( )
A.a>0,b>0 B.a<0,b<0 C.a≤0,b≤0 D.a≥0,b≥0
【分析】根据二次根式的乘法法则,即可解答.
【解答】解:对于二次根式的乘法运算,一般地,有•=.该运算法则成立的条件是a≥0,b≥0,
故选:D.
【点评】本题考查了二次根式的乘除法,熟练掌握二次根式的乘法法则是解题的关键.
8.(3分)如图,在四边形ABCD中,已知AD∥BC.添加下列条件不能判定四边形ABCD是平行四边形的是( )
A.AD=BC B.AB∥DC C.AB=DC D.∠A=∠C
【分析】由平行四边形的判定方法,即可判断.
【解答】解:A、因为AD∥BC,AD=BC,因此由一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,故A不符合题意;
B、因为AD∥BC,AB∥DC,因此由两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故B不符合题意;
C、AB=DC,但AB和CD不一定平行,因此不能判定四边形ABCD是平行四边形,故C符合题意;
D、因为AD∥BC得到∠ADB=∠CBD,又∠A=∠C,BD=DB,因此△ABD≌△CDB(AAS),得到AD=CB,能判定四边形ABCD是平行四边形,故D不符合题意;
故选:C.
【点评】本题考查平行四边形的判定,关键是掌握平行四边形的判定方法.
9.(3分)《孙子算经》中有“鸡兔同笼”问题:“今有鸡免同笼,上有三十五头,下有九十四足,问鸡免各几何.”
设有x只鸡,y只兔,依题意,可列方程组为( )
A. B.
C. D.
【分析】根据今有鸡免同笼,上有三十五头,可以得到x+y=35,再根据下有九十四足,可以得到2x+4y=94,然后即可得到相应的方程组.
【解答】解:由题意可得,
,
故选:C.
【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
10.(3分)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为S甲2和S乙2.则S甲2和S乙2的大小关系是( )
测试次数
1
2
3
4
5
甲
5
10
9
3
8
乙
8
6
8
6
7
A.S甲2>S乙2 B.S甲2<S乙2 C.S甲2=S乙2 D.无法确定
【分析】直接根据图表数据的波动大小进行判断即可.
【解答】解:图表数据可知,
甲数据在3至10之间波动,偏离平均数数据较大;乙数据在6至8之间波动,偏离平均数数据较小;
即甲的波动性较大,即方差大,
∴S甲2>S乙2,
故选:A.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
11.(3分)我们可以用以下推理来证明“在一个三角形中,至少有一个内角小于或等于60°”.假设三角形没有一个内角小于或等于60°,即三个内角都大于60°.”,则三角形的三个内角的和大于180°.这与“三角形的内角和等于180°”这个定理矛盾,所以在一个三角形中,至少有一个内角小于或等于60°.上述推理使用的证明方法是( )
A.反证法 B.比较法 C.综合法 D.分析法
【分析】根据反证法证明命题的方法判断.
【解答】解:证明“在一个三角形中,至少有一个内角小于或等于60°”.
假设三角形没有一个内角小于或等于60°,即三个内角都大于60°.”,则三角形的三个内角的和大于180°.
这与“三角形的内角和等于180°”这个定理矛盾,所以在一个三角形中,至少有一个内角小于或等于60°,这种证明方法是反证法,
故选:A.
【点评】本题考查的是反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.
12.(3分)已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是( )
A.x3<x1<x2<x4 B.x1<x3<x4<x2
C.x1<x2<x3<x4 D.x3<xx<x1<x2
【分析】画出抛物线y=x2+2x﹣3,直线y=m,直线y=n,根据一元二次方程与二次函数的关系的关系,观察图象可得答案.
【解答】解:关于x的方程x2+2x﹣3﹣m=0的解为抛物线y=x2+2x﹣3与直线y=m的交点的横坐标,
关于x的方程x2+2x﹣3﹣n=0的解为抛物线y=x2+2x﹣3与直线y=n的交点的横坐标,
如图:
由图可知,x1<x3<x4<x2,
故选:B.
【点评】本题考查一元二次方程与二次函数的关系,解题的关键是画出图象,数形结合解决问题.
二、填空题(本大题共6个小题,每小题3分,满分18分.)
13.(3分)在平面直角坐标系中,点P(﹣3,﹣2)所在象限是第 三 象限.
【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.
【解答】解:点P(﹣3,﹣2)在第三象限,
故答案为:三.
【点评】此题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号.
14.(3分)一个布袋中放着3个红球和9个黑球,这两种球除了颜色以外没有任何其他区别.布袋中的球已经搅匀,从布袋中任取1个球,取出红球的概率是 .
【分析】根据一个布袋中放着3个红球和9个黑球,可以计算出从布袋中任取1个球,取出红球的概率.
【解答】解:∵一个布袋中放着3个红球和9个黑球,
∴从布袋中任取1个球,取出红球的概率是=,
故答案为:.
【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.
15.(3分)已知x=5,则代数式﹣的值为 .
【分析】根据分式的减法法则把原式化简,把x的值代入计算即可.
【解答】解:原式=﹣
=
=
=,
当x=5时,原式==,
故答案为:.
【点评】本题考查的是分式的化简求值,掌握分式的减法法则是解题的关键.
16.(3分)已知关于x的方程x2+mx﹣20=0的一个根是﹣4,则它的另一个根是 5 .
【分析】设方程的另一个解为t,则利用根与系数的关系得﹣4t=﹣20,然后解一次方程即可.
【解答】解:设方程的另一个解为t,
根据根与系数的关系得﹣4t=﹣20,
解得t=5,
即方程的另一个根为5.
故答案为:5.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.
17.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.以点C为圆心,r为半径作圆,当所作的圆与斜边AB所在的直线相切时,r的值为 .
【分析】设⊙C与AB所在的直线相切,切点为点D,连接CD,根据切线的性质得AB⊥CD,再由勾股定理求得AB==10,则AB•CD=AC•BC=S△AOB,所以×10CD=×8×6,则r=CD=,于是得到问题的答案.
【解答】解:设⊙C与AB所在的直线相切,切点为点D,连接CD,
∵CD是⊙C的半径,AB与⊙C相切于点D,
∴AB⊥CD,
∵∠ACB=90°,AC=8,BC=6,
∴AB===10,
∵AB•CD=AC•BC=S△AOB,
∴×10CD=×8×6,
解得CD=,
∴r=CD=,
故答案为:.
【点评】此题重点考查切线的性质、勾股定理、根据面积等式求线段的长度等知识与方法,正确地作出所需要的辅助线是解题的关键.
18.(3分)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 10 .
【分析】先求出多边形的每一个内角为108°,可得到∠O=36°,即可求解.
【解答】解:∵多边形是正五边形,
∴正五边形的每一个内角为:×180°×(5﹣2)=108°,
∴∠O=180°﹣(180°﹣108°)×2=36°,
∴正五边形的个数是360°÷36°=10.
故答案为:10.
【点评】本题主要考查正多边形与圆,多边形内角和问题,熟练掌握相关知识点是解题关键.
三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分,解答应写出文字说明、证明过程或验算步骤.)
19.(6分)计算:|﹣3|++(﹣2)×1.
【分析】利用绝对值的意义,算术平方根的意义和有理数的乘法法则化简运算即可.
【解答】解:原式=3+2+(﹣2)
=3+2﹣2
=3.
【点评】本题主要考查了实数的运算,绝对值的意义,算术平方根的意义和有理数的乘法法则,熟练掌握上述法则与性质是解题的关键.
20.(6分)解不等式组:.
【分析】按照解一元一次不等式组的步骤,进行计算即可解答.
【解答】解:,
解不等式①得:x≤4,
解不等式②得:x>2,
∴原不等式组的解集为:2<x≤4.
【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.
21.(8分)2023年3月27日是第28个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某学校举行了校园安全知识竞赛活动.现从八、九年级中各随机抽取15名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,80分及以上为优秀,共分成四组,A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100),并给出下面部分信息:
八年级抽取的学生竞赛成绩在C组中的数据为:84,84,88
九年级抽取的学生竞赛成绩为:68,77,75,100,80,100,82,86,95,91,100,86,84,94,87.八、九年级抽取的学生竞赛成绩统计表
年级
平均数
中位数
众数
优秀率
八
87
a
98
60%
九
87
86
b
c
根据以上信息,解答下列问题:
(1)填空:a= 84 ,b= 100 ,c= 80% ;
(2)该校八、九年级共500人参加了此次竞赛活动,请你估计该校八、九年级参加此次竞赛活动成绩达到90分及以上的学生人数.
【分析】(1)根据中位数、众数的意义,分别求出八年级的中位数,和九年级的众数;
(2)利用样本估计总体即可.
【解答】解:(1)八年级的竞赛成绩从小到大排列后,处在中间位置的一个数是84,因此中位数是84,即a=84;
九年级的竞赛成绩出现次数最多的是100,共出现3次,因此众数是100,即b=100;
九年级的竞赛成绩中80分及以上的共有12人,因此优秀率为×100%=80%,即c=80%;
故答案为:84,100,80%;
(2)500×=200(人),
答:估计该校八、九年级参加此次竞赛活动成绩达到90分及以上的学生人数约200人.
【点评】本题考查了方差、平均数、中位数、众数的意义和计算方法,掌握各个统计量的计算方法是正确计算的前提.
22.(8分)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象相交于点A.
(1)求点A的坐标.
(2)分别以点O、A为圆心,大于OA一半的长为半径作圆弧,两弧相交于点B和点C,作直线BC,交x轴于点D.求线段OD的长.
【分析】(1)将正比例函数与反比例函数的解析式联立,组成方程组,解方程组即可求出点A的坐标;
(2)设点D的坐标为(x,0).根据线段垂直平分线的性质得出AD=OD,依此列出方程(x﹣3)2+42=x2,解方程即可.
【解答】解:(1)解方程组(x>0),
得,
∴点A的坐标为(3,4);
(2)设点D的坐标为(x,0).
由题意可知,BC是OA的垂直平分线,
∴AD=OD,
∴(x﹣3)2+42=x2,
∴x=,
∴D(,0),OD=.
【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了线段垂直平分线的性质.
23.(8分)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度,圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部24米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.
(1)求教学楼AB的高度.
(2)若无人机保持现有高度沿平行于CA的方向,以4米/秒的速度继续向前匀速飞行.求经过多少秒时,无人机刚好离开圆圆的视线EB.
【分析】(1)过点B作BM⊥CD于点M,则∠DBM=∠BDN=30°,在Rt△BDM中,通过解直角三角形可得出BM的长度,再结合AB=CM=CD﹣DM,即可求出结论;
(2)延长EB交DN于点G,则∠DGE=∠MBE,在Rt△EMB中,利用锐角三角函数的定义求出∠MBE=30°,从而可得∠DEG=60°,然后在Rt△EDG中,利用锐角三角函数的定义求出DG的长,最后进行计算即可解答.
【解答】解:(1)过点B作BM⊥CD于点M,则∠DBM=∠BDN=30°,
在Rt△BDM中,BM=AC=24米,∠DBM=30°,
∴DM=BM•tan∠DBM=24×=24(米),
∴AB=CM=CD﹣DM=49.6﹣24=25.6(米).
答:教学楼AB的高度为25.6米;
(2)延长EB交DN于点G,则∠DGE=∠MBE,
在Rt△EMB中,BM=AC=24米,EM=CM﹣CE=24米,
∴tan∠MBE===,
∴∠MBE=30°=∠DGE,
∵∠EDG=90°,
∴∠DEG=90°=30°=60°,
在Rt△EDG中,ED=CE﹣CE=48米,
∴DG=ED•tan60°=48(米),
∴48÷4=12(秒),
∴经过12秒时,无人机刚好离开了小明的视线.
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
24.(8分)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.
(1)求证:AF=DF.
(2)若AF=,sin∠ABD=,求⊙O的半径.
【分析】(1)由D是弧AC的中点,得出,再由垂径定理得出,根据等弧所对圆周角相等得出∠ADH=∠CAD,即可证明出结论.
(2)证明出∠ADE=∠B,得出tan∠ADE=,设AE=x,根据勾股定理求出x,再求出直径即可.
【解答】(1)证明:∵D是弧AC的中点,
∴,
∵AB⊥DH,且AB是⊙O的直径,
∴,
∴,
∴∠ADH=∠CAD,
∴AF=DF.
(2)解:∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠B=90°,
∵∠DAE+∠ADE=90°,
∴∠ADE=∠B,
∴sin∠ADE=,
∴tan∠ADE=,
设AE=x,则DE=2x,
∵DF=AF=,
∴EF=2x﹣,
∵AE2+EF2=AF2,
∴x=2,
∴AD==2,
∴AB=,
∴AB=10,
∴⊙O的半径为5.
【点评】本题考查了圆的相关性质的应用,解直角三角形、勾股定理的计算是解题关键.
25.(10分)[问题探究]
(1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.
①求证:PD=PB;
②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;
③探究AQ与OP的数量关系,并说明理由.
[迁移探究]
(2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.
【分析】(1)①根据正方形的性质证明△DCP≌△BCP,即可得到结论;
②作PM⊥AB,PN⊥AD,垂足分别为点M、N,如图,可得PM=PN,证明四边形AMPN是矩形,推出∠MPN=90°,证明Rt△DPN≌Rt△QPM(HL),得出∠DPN=∠QPM,进而可得结论;
③作PE⊥AO交AB于点E,作EF⊥OB于点F,如图,证明AQ=BE,BE=EF即可得出结论;.
(2)先证明PQ=PB,作PE∥BC交AB于点E,EG∥AC交BC于点G,如图,则四边形PEGC是平行四边形,可得EG=PC,△APE,△BEG都是等边三角形,进一步即可证得结论.
【解答】(1)①证明:∵四边形ABCD是正方形,
∴CD=CB,∠DCA=∠BCA=45°
∵CP=CP,
∴△DCP≌△BCP,
∴PD=PB;
②解:∠DPQ的大小不发生变化,∠DPQ=90°;
理由:作PM⊥AB,PN⊥AD,垂足分别为点M、N,如图,
∵四边形ABCD是正方形,
∴∠DAC=∠BAC=45°,∠DAB=90°,
∴四边形AMPN是矩形,PM=PN,
∴∠MPN=90°
∵PD=PQ,PM=PN,
∴Rt△DPN≌Rt△QPM(HL),
∴∠DPN=∠QPM,
∴∠QPN+∠QPM=90°
∴∠QPN+∠DPN=90°,即∠DPQ=90°;
③解:AQ=OP;
理由:作PE⊥AO交AB于点E,作EF⊥OB于点F,如图,
∵四边形ABCD是正方形,
∴∠BAC=45°,∠AOB=90°,
∴∠AEP=45°,四边形OPEF是矩形,
∴∠PAE=∠PEA=45°,EF=OP,
∴PA=PE,
∵PD=PB,PD=PQ,
∴PQ=PB,
作PM⊥AE于点M,
则QM=BM,AM=EM,
∴AQ=BE,
∵∠EFB=90°,∠EBF=45°,
∴BE=EF,
∴AQ=OP;
(2)解:AQ=CP;
理由:四边形ABCD是菱形,∠ABC=60°,
∴AB=BC,AC⊥BD,DO=BO,
∴△ABC是等边三角形,AC垂直平分BD,
∴∠BAC=60°,PD=PB,
∵PD=PQ,
∴PQ=PB,
作PE∥BC交AB于点E,EG∥AC交BC于点G,如图,
则四边形PEGC是平行四边形,∠GEB=∠BAC=60°,∠AEP=∠ABC=60°,
∴EG=PC,△APE,△BEG都是等边三角形,
∴BE=EG=PC,
作PM⊥AB于点M,则QM=MB,AM=EM,
∴QA=BE,
∴AQ=CP.
【点评】本题是四边形综合题,主要考查了正方形、菱形的性质,矩形、平行四边形、等边三角形的判定和性质,全等三角形的判定和性质以及解直角三角形等知识,熟练掌握相关图形的判定和性质、正确添加辅助线是解题的关键.
26.(12分)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y轴交于点C,连接AC,过B、C两点作直线.
(1)求a的值.
(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.
(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.
【分析】(1)将点A(﹣1,0)代入y=ax2﹣2ax+3,即可求得a=﹣1;
(2)利用待定系数法可得直线BC的解析式为y=﹣x+3,由平移可得直线B′C′的解析式为y=﹣x+3﹣m,设D(t,﹣t2+2t+3),过点D作DE∥y轴,交B′C′于点E,作DF⊥B′C′于点F,设直线B′C′交y轴于点G,则E(t,﹣t+3﹣m),可得DE=﹣t2+2t+3﹣(﹣t+3﹣m)=﹣t2+3t+m,再证得△DEF是等腰直角三角形,可得DF=DE=(﹣t2+3t+m)=﹣(t﹣)2+(+m),运用二次函数的性质即可求得答案;
(3)分两种情况:当∠PBC在BC的下方时,当∠PBC在BC的上方时,分别求得直线BP的解析式,联立方程组求解即可求得点P的坐标.
【解答】解:(1)∵抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0),
∴a+2a+3=0,
∴a=﹣1.
(2)存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.
∵y=﹣x2+2x+3,
当x=0时,y=3,
∴C(0,3),
当y=0时,﹣x2+2x+3=0,
解得:x1=﹣1,x2=3,
∴B(3,0),
设直线BC的解析式为y=kx+b,则,
解得:,
∴直线BC的解析式为y=﹣x+3,
∵将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点,
∴直线B′C′的解析式为y=﹣x+3﹣m,
设D(t,﹣t2+2t+3),
过点D作DE∥y轴,交B′C′于点E,作DF⊥B′C′于点F,设直线B′C′交y轴于点G,如图,
∴E(t,﹣t+3﹣m),
∴DE=﹣t2+2t+3﹣(﹣t+3﹣m)=﹣t2+3t+m,
∵OB=OC=3,∠BOC=90°,
∴∠BCO=∠CBO=45°,
∵B′C′∥BC,
∴∠B′GO=∠BCO=45°,
∵DE∥y轴,
∴∠DEF=∠B′GO=45°,
∵∠DFE=90°,
∴△DEF是等腰直角三角形,
∴DF=DE=(﹣t2+3t+m)=﹣(t﹣)2+(+m),
∵﹣<0,
∴当t=时,DF取得最大值(+m),此时点D的坐标为(,).
(3)存在.
当∠PBC在BC的下方时,在y轴正半轴上取点M(0,1),连接BM交抛物线于点P,如图,
∵A(﹣1,0),B(3,0),C(0,3),M(0,1),
∴OB=OC=3,OM=OA=1,∠BOM=∠COA=90°,
∴△BOM≌△COA(SAS),
∴∠MBO=∠ACO,
∵∠CBO=45°,
∴∠CBP+∠MBO=45°,
∴∠CBP+∠ACO=45°,
设直线BM的解析式为y=k′x+b′,则,
解得:,
∴直线BM的解析式为y=﹣x+1,
联立,得,
解得:(舍去),,
∴P(﹣,);
当∠PBC在BC的上方时,作点M关于直线BC的对称点M′,如图,连接MM′,CM′,直线BM′交抛物线于P,
由对称得:MM′⊥BC,CM′=CM=2,∠BCM′=∠BCM=45°,
∴∠MCM′=90°,
∴M′(2,3),
则直线BM′的解析式为y=﹣3x+9,
联立,得:,
解得:(舍去),,
∴P(2,3);
综上所述,抛物线上存在点P,使∠PBC+∠ACO=45°,点P的坐标为(﹣,)或(2,3).
【点评】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,直线的平移,等腰直角三角形性质,全等三角形的判定和性质,轴对称的性质等,第(3)问要注意分类讨论,防止漏解.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/6/26 17:34:30;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557
2023年湖南省衡阳市中考数学试卷: 这是一份2023年湖南省衡阳市中考数学试卷,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年湖南省衡阳市中考数学试卷: 这是一份2021年湖南省衡阳市中考数学试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年湖南省衡阳市中考数学试卷-含答案: 这是一份2020年湖南省衡阳市中考数学试卷-含答案,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。