初二数学立方差公式
展开
这是一份初二数学立方差公式,共1页。试卷主要包含了 证明如下,证明如下等内容,欢迎下载使用。
初二数学立方差公式 初二数学立方差公式立方差公式: a^3 - b^3 = (a-b) (a^2+ab+b^2)推导过程:1. 证明如下:(a-b)^3=a^3-3a^2b+3ab^2-b^3所以a^3-b^3=(a-b)^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)2.(因式分解思想)证明如下:a^3-b^3=a^3-a^2*b-b^3+a^2*b=a^2(a-b)+b(a^2-b^2)=a^2(a-b)+b(a+b)(a-b)==(a-b)[a^2+b(a+b)]=(a-b)(a^2+ab+b^2)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。推论:“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。类似的,我们有立方和公式及其推广:(1) a^3+b^3=(a+b)(a^2-ab+b^2)“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。(2) a^n+b^n=(a+b)[a^(n-1)-a^(n-2)b+...+(-1)^(r-1)a^(n-r)b^(r-1)+...+b^(n-1)](n为大于零的奇数,r为中括号内项的序数) (后面括号中各项式的幂之和都为n-1)。a^n表示a的n次方。
相关试卷
这是一份初二数学公式图形计算公式,共2页。试卷主要包含了正方形,正方体,长方形,长方体,三角形,平行四边形,梯形,圆柱体等内容,欢迎下载使用。
这是一份初二数学公式换底公式,共2页。
这是一份初二数学公式归纳:顶点坐标公式,共4页。