高中人教B版 (2019)4.7 数学建模活动:生长规律的描述示范课ppt课件
展开1.常见的函数模型(1)一次函数模型形如y=kx+b(k≠0)的函数模型是一次函数模型.应用一次函数的性质及图像解题时,应注意:①一次函数有单调递增(一次项系数为正)和单调递减(一次项系数为负)两种情况;②一次函数的图像是一条直线.
(2)二次函数模型形如y=ax2+bx+c(a≠0)的函数模型是二次函数模型.二次函数模型是重要的数学模型之一,依据实际问题建立二次函数的解析式后,利用配方法求最值简单易懂,有时也可以依据二次函数的性质求最值,从而解决利润最大、用料最省等问题.
思考:一次、二次函数模型的定义域都是全体实数,在实际应用问题中,定义域一定是全体实数吗?提示:不一定.在实际应用中,函数的自变量x往往具有实际意义,如x表示长度时,x≥0;x表示件数时,x≥0,且x∈Z等.在解答时,必须要考虑这些实际意义.
牛顿(1642~1727)是英国著名的物理学家、数学家和天文学家,是17世纪最伟大的科学巨匠.然而,对于一些在自然科学上一知半解的人来说,牛顿的赫赫有名与其说来自于他的科学发现,毋宁说是来自于那个妇孺皆知的苹果落地的传说.那是1666年夏末的一个傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进了他母亲家的花园,坐在一棵树下,开始埋头读他的书.正在他翻动书页时,他头顶上的树枝被风吹得晃动了起来.突然,“啪”的一声,一只历史上最著名的
苹果落了下来,恰好打在了这位青年的头上.这位青年不是别人,正是牛顿.据说,牛顿当时正在苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,又是什么力量使行星保持在其环绕太阳运行的轨道上?掉下来的苹果打断了他的思索,“为什么这只苹果会坠落到地上呢?”牛顿转而考虑起这个使他感到困惑不解的问题.有人说正是从这一问题的思考中,他找到了答案,并提出了万有引力定律.
问题 你知道什么是数学建模吗?提示 数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要过程包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,求解模型、检验结果、得出结论,最终解决实际问题.
1.用函数构建数学模型解决实际问题的步骤(1)观察实际情景:对实际问题中的变化过程进行分析;(2)发现和提出问题:析出常量、变量及其相互关系;(3)收集数据、分析数据:明确其运动变化的基本特征,从而确定它的运动变化类型;(4)选择函数模型:根据分析结果,选择适当的函数类型构建数学模型,将实际问题化归为数学问题;(5)求解函数模型:通过运算推理,求解函数模型;(6)检验模型: 利用函数模型的解说明实际问题的变化规律,达到解决问题的目的.
2.数学建模活动的要求 (1)组建团队;(2)开展研究报告;(3)撰写研究报告;(4)交流展示.
教材拓展补遗[微判断]1.在构建函数模型时,经常会遇到没有现成数据可用的情况,这时就需要先收集数据.( )2.在用函数构建数学模型解决实际问题时,首先要对实际问题中的变化过程进行分析,析出其中的常量、变量及其相互关系.( )3.求出函数模型后,还需要利用函数模型的解说明实际问题的变化规律,从而达到解决问题的目的.( )
[微思考]数学建模活动是一个科学的研究过程,科学研究通常要经历哪几个步骤?提示 科学研究通常需要经历四个基本步骤(1)选题;(2)开题;(3)做题;(4)结题.
生长规律的描述1.发现问题,提出问题生物的生长发育是一个连续的过程,但不同的时间段可能有不同的增长速度.例如,卫生部2009年6月发布的《中国7岁以下儿童生长发育参照标准》指出,我国7岁以下女童身高(长)的中位数如下表所示(0岁指刚出生时)
交流与讨论1: ①这个问题中涉及到两个量——年龄和身高,你能否用自己的语言描述这两个量之间的关系? ②这两个量之间的关系是不是函数关系?为什么? ③如果是函数关系,哪个是自变量?哪个是因变量?定义域和值域分别是什么?有什么性质?你能否写出一个函数解析式表示这个关系?
2.分析问题、建立模型
我们可以先画出它的图像,从直观上看看像什么函数:
从数据和图都可以看出,我国7岁以下女童身高的增长速度越来越慢.
交流与讨论2: ①你认为怎样选择函数模型来刻画年龄和身高之间的变化关系? ②我们学过一些什么函数? ③你觉得这个图像最像什么函数的图像?你能大概写出它的解析式吗?
要描述生长规律,实际上是要描述当一个量(记为x)变化时,另外一个量(记为y)会怎样变化.例如,随着年龄的增长,身高将怎样变化?不难想到,我们可以借助函数y=f(x)来描述生长规律.因为从生长规律来说,当x增大时,y是增大的,这说明函数y=f(x)在指定的范围内应该是增函数;又因为不同的时间段有不同的增长速度,所以函数y=f(x)不能是一次函数.
交流与讨论4:①你认为怎么验证函数模型?②你认为应该从哪些方面改进函数模型?
因为在求解时,我们都只用到了部分已有的数据,因此可以利用其他数据来检验所建立模型的优劣.
1. 你认为怎样选择函数拟合数据误差更小?2. 数学建模的主要步骤有哪些?如何撰写数学建模论文?
高中数学人教B版 (2019)必修 第二册4.7 数学建模活动:生长规律的描述说课ppt课件: 这是一份高中数学人教B版 (2019)必修 第二册4.7 数学建模活动:生长规律的描述说课ppt课件,共43页。PPT课件主要包含了数学建模的主要步骤,实施模型解决问题,提出问题,来描述,建立模型,参数求解,模型检验,如何避免正负相消等内容,欢迎下载使用。
高中数学人教B版 (2019)必修 第二册4.7 数学建模活动:生长规律的描述说课ppt课件: 这是一份高中数学人教B版 (2019)必修 第二册4.7 数学建模活动:生长规律的描述说课ppt课件,共18页。PPT课件主要包含了数学建模,数学建模实例等内容,欢迎下载使用。
数学必修 第二册4.6 函数的应用(二)集体备课课件ppt: 这是一份数学必修 第二册4.6 函数的应用(二)集体备课课件ppt,文件包含人教B版高中数学必修第二册第4章46函数的应用二47数学建模活动生长规律的描述课件ppt、人教B版高中数学必修第二册第4章46函数的应用二47数学建模活动生长规律的描述学案doc、人教B版高中数学必修第二册课后素养落实9函数的应用二数学建模活动生长规律的描述含答案doc等3份课件配套教学资源,其中PPT共53页, 欢迎下载使用。