人教A版 (2019)必修 第一册4.2 指数函数授课ppt课件
展开
这是一份人教A版 (2019)必修 第一册4.2 指数函数授课ppt课件,共25页。PPT课件主要包含了学习目标,问题探究,概念解析,概念辨析,典例解析,跟踪训练,归纳总结,当堂达标等内容,欢迎下载使用。
1.理解指数函数的概念与意义,掌握指数函数的定义 域、值域的求法.(重点)2.理解指数函数增长变化迅速的特点(难点)
对于幂 ,我们已经把指数 的范围拓展到了实数.上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数的过程和方法.下面继续研究其他类型的基本初等函数.
问题1 随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式.由于旅游人数不断增加,A,B两地景区自2011年起采取了不同的应对措施,A地提高了景区门票价格,而B地则取消了景区门票.
下表给出了A,B两地景区2011年至2015年的游客人次以及逐年增加量.
比较两地景区游客人次的变化情况,你发现了怎样的变化规律?为了有利于观察规律,根据表,分别画出A,B两地景区采取不同措施后的15年游客人次的图
观察图象和表格,可以发现,A地景区的游客人次近似于直线上升(线性增长),年增加量大致相等(约为10万次);B地景区的游客人次则是非线性增长,年增加量越来越大,但从图象和年增加量都难以看出变化规律.
我们知道,年增加量是对相邻两年的游客人次做减法得到的.能否通过对B地景区每年的游客人次做其他运算发现游客人次的变化规律呢?请你试一试.
从2002年起,将B地景区每年的游客人次除以上一年的游客人次,可以得到
结果表明,B 地景区的游客人次的年增长率都约为1.11-1=0.11,是一个常数.
做减法可以得到游客人次的年增加量,做除法可以得到游客人次的年增长率.增加量、增长率是刻画事物变化规律的两个很重要的量.
1年后,游客人次是2001年的1.111倍;2年后,游客人次是2001年的1.112倍;3年后,游客人次是2001年的1.113倍;……x年后,游客人次是2001年的1.11x倍.如果设经过x年后的游客人次为2001年的y倍,那么y= 1.11x (x∈[0,+∞)). ①这是一个函数,其中指数x是自变量.
像这样,增长率为常数的变化方式,我们称为指数增长.因此,B地景区的游客人次近似于指数增长.显然,从2001年开始,B地景区游客人次的变化规律可以近似描述为:
问题2 当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系? 设死亡生物体内碳14含量的年衰减率为狆,如果把刚死亡的生物体内碳14含量看成1个单位,那么
分析:要求f(0),f(1),f(-3)的值,应先求出f(x)=ax的解析式即先求出a的值;
例2(1)在问题1中,如果平均每位游客出游一次可给当地带来1000元门票之外的收入,A地景区的门票价格为150元,比较这15年间A,B两地旅游收入变化情况.
解:(1)设经过x年,游客给A,B两地带来的收入分别为f(x) 和g(x),则f(x)=1150×(10x+600),g(x)=1000×278×1.11x.
利用计算工具可得,当x=0时,f(0)-g(0)=412000.当x≈10.22时,f(10.22)≈g(10.22).结合图可知:当x<10.22时,f(x)>g(x),当x>10.22时,f(x)<g(x).当x=14时,f(14)-g(14)≈347303.
这说明,在2001年,游客给A地带来的收入比B地多412000万元;随后10年,虽然f(x)>g(x),但g(x)的增长速度大于f(x);根据上述数据,并考虑到实际情况,在2011年2月某个时刻就有f(x)=g(x),
这时游客给A地带来的收入和B地差不多;此后,f(x)<g(x),游客给B地带来的收入超过了A地;由于g(x)增长得越来越快,在2015年,B地的收入已经比A地多347303万元了.
2.下列图象中,有可能表示指数函数的是( ).
相关课件
这是一份人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.2 指数函数说课课件ppt,共28页。
这是一份数学必修 第一册3.1 函数的概念及其表示课堂教学ppt课件,共34页。PPT课件主要包含了不正确,函数的概念,想一想,x→ax+b,xx≠0,yy≠0,区间的概念,x≥a,x≤b,-∞b等内容,欢迎下载使用。
这是一份人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.2 指数函数教案配套课件ppt,共14页。PPT课件主要包含了问题1,号同学2,号同学224,号同学238,号同学2416,x号同学2x,问题2,问题3等内容,欢迎下载使用。