2021_2023年高考数学真题分类汇编专题09三角函数解答题
展开专题09三角函数 (解答题)
近三年高考真题
1.(2023•北京)已知函数,,.
(Ⅰ)若,求的值;
(Ⅱ)若在,上单调递增,且,再从条件①、条件②、条件③这三个条件中选择一个作为已知,求、的值.
条件①:;
条件②:;
条件③:在,上单调递减.
注:如果选择多个条件分别解答,按第一个解答计分.
【解析】(Ⅰ)因为函数,
所以,
又因为,所以.
(Ⅱ)若选①:;
因为,
所以在和时取得最大值1,这与在,上单调递增矛盾,所以、的值不存在.
若选②:;
因为在,上单调递增,且,
所以在时取得最小值,时取得最大值1,
所以的最小正周期为,计算,
又因为,所以,,
解得,;
又因为,所以;
若选③:在,上单调递减,因为在,上单调递增,且,
所以在时取得最小值,时取得最大值1,
所以的最小正周期为,所以,
又因为,所以,,
解得,;
又因为,所以.
2.(2021•浙江)设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在,上的最大值.
【解析】函数,
(Ⅰ)函数
,
则最小正周期为;
(Ⅱ)函数
,
因为,所以,
所以当,即时,.
2021_2023年高考数学真题分类汇编专题06立体几何解答题文: 这是一份2021_2023年高考数学真题分类汇编专题06立体几何解答题文,共14页。试卷主要包含了如图,在长方体中,已知,,如图,四面体中,,,,为的中点等内容,欢迎下载使用。
2021_2023年高考数学真题分类汇编专题06立体几何解答题理: 这是一份2021_2023年高考数学真题分类汇编专题06立体几何解答题理,共31页。试卷主要包含了在四棱锥中,底面,,,,,如图,四面体中,,,,为的中点,如图,在长方体中,已知,,如图,四面体中,,,平面等内容,欢迎下载使用。
2021_2023年高考数学真题分类汇编专题14概率与统计解答题文: 这是一份2021_2023年高考数学真题分类汇编专题14概率与统计解答题文,共7页。