2020年中考数学真题分项汇编专题12二次函数压轴解答题 (含解析)
展开专题12二次函数压轴解答题
一.解答题(共44小题)
1.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).
(1)求这个二次函数的表达式;
(2)求当﹣2≤x≤1时,y的最大值与最小值的差;
(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.
【分析】(1)由二次函数的图象经过(﹣1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;
(2)求得抛物线的对称轴,根据图象即可得出当x=﹣2,函数有最大值4;当x是函数有最小值,进而求得它们的差;
(3)由题意得x2﹣x﹣2=(2﹣m)x+2﹣m,整理得x2+(m﹣3)x+m﹣4=0,因为a<2<b,a≠b,△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0,把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m.
【解析】(1)由二次函数y=x2+px+q的图象经过(﹣1,0)和(2,0)两点,
∴,解得,
∴此二次函数的表达式y=x2﹣x﹣2;
(2)∵抛物线开口向上,对称轴为直线x,
∴在﹣2≤x≤1范围内,当x=﹣2,函数有最大值为:y=4+2﹣2=4;当x是函数有最小值:y2,
∴的最大值与最小值的差为:4﹣();
(3)∵y=(2﹣m)x+2﹣m与二次函数y=x2﹣x﹣2图象交点的横坐标为a和b,
∴x2﹣x﹣2=(2﹣m)x+2﹣m,整理得
x2+(m﹣3)x+m﹣4=0
∵a<3<b
∴a≠b
∴△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0
∴m≠5
∵a<3<b
当x=3时,(2﹣m)x+2﹣m>x2﹣x﹣2,
把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m
∴m的取值范围为m.
2.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
(1)求抛物线的解析式及点G的坐标;
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.
【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;
(2)先求出点M,点N坐标,即可求解.
【解析】(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,
∴点B(0,c),
∵OA=OB=c,
∴点A(c,0),
∴0=﹣c2+2c+c,
∴c=3或0(舍去),
∴抛物线解析式为:y=﹣x2+2x+3,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点G为(1,4);
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴对称轴为直线x=1,
∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,
∴点M的横坐标为﹣2或4,点N的横坐标为6,
∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),
∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,
∴﹣21≤yQ≤4.
3.(2020•凉山州)如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(,)三点.
(1)求二次函数的解析式;
(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;
(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.
【分析】(1)将点O、A、B的坐标代入抛物线表达式,即可求解;
(2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x负半轴的夹角为60°,故设CD的表达式为:yx+b,而OB中点的坐标为(,),将该点坐标代入CD表达式,即可求解;
(3)过点P作y轴额平行线交CD于点H,PHx(x2x)x2x,即可求解.
【解析】(1)将点O、A、B的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:yx2x;
(2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x负半轴的夹角为60°,
故设CD的表达式为:yx+b,而OB中点的坐标为(,),
将该点坐标代入CD表达式并解得:b,
故直线CD的表达式为:yx;
(3)设点P(x,x2x),则点Q(x,x),
则PQx(x2x)x2x,
∵0,故PQ有最大值,此时点P的坐标为(,).
4.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.
(1)求a的值;
(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.
【分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;
(2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.
【解析】(1)∵y=﹣x2+(a+1)x﹣a,
令x=0,则y=﹣a,
∴C(0,﹣a),
令y=0,即﹣x2+(a+1)x﹣a=0
解得x1=a,x2=1
由图象知:a<0
∴A(a,0),B(1,0)
∵S△ABC=6
∴(1﹣a)(﹣a)=6
解得:a=﹣3,(a=4舍去);
(2)∵a=﹣3,
∴C(0,3),
∵S△ABP=S△ABC.
∴P点的纵坐标为±3,
把y=3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=3,解得x=0或x=﹣2,
把y=﹣3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=﹣3,解得x=﹣1或x=﹣1,
∴P点的坐标为(﹣2,3)或(﹣1,﹣3)或(﹣1,﹣3).
5.(2020•杭州)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).
(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.
(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).
(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.
【分析】(1)利用待定系数法解决问题即可.
(2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出10,即a()2+b•1=0,推出是方程ax2+bx+1的根,可得结论.
(3)由题意a>0,∴m,n,根据m+n=0,构建方程可得结论.
【解析】(1)由题意,得到3,解得b=﹣6,
∵函数y1的图象经过(a,﹣6),
∴a2﹣6a+a=﹣6,
解得a=2或3,
∴函数y1=x2﹣6x+2或y1=x2﹣6x+3.
(2)∵函数y1的图象经过点(r,0),其中r≠0,
∴r2+br+a=0,
∴10,
即a()2+b•1=0,
∴是方程ax2+bx+1的根,
即函数y2的图象经过点(,0).
(3)由题意a>0,∴m,n,
∵m+n=0,
∴0,
∴(4a﹣b2)(a+1)=0,
∵a+1>0,
∴4a﹣b2=0,
∴m=n=0.
6.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.
(1)判断点B是否在直线y=x+m上,并说明理由;
(2)求a,b的值;
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,q),根据题意得出q1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q1(p﹣1)2,从而得出q的最大值.
【解析】(1)点B是在直线y=x+m上,理由如下:
∵直线y=x+m经过点A(1,2),
∴2=1+m,解得m=1,
∴直线为y=x+1,
把x=2代入y=x+1得y=3,
∴点B(2,3)在直线y=x+m上;
(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
∴抛物线只能经过A、C两点,
把A(1,2),C(2,1)代入y=ax2+bx+1得,
解得a=﹣1,b=2;
(3)由(2)知,抛物线为y=﹣x2+2x+1,
设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,q),
∵顶点仍在直线y=x+1上,
∴q1,
∴q1,
∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,
∴q1(p﹣1)2,
∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.
7.(2020•陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
【分析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;
(2)由题意得:PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,分点P在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,分别求解即可.
【解析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2+2x﹣3;
(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,
故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),
故OA=OC=3,
∵∠PDE=∠AOC=90°,
∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,
设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,
故n=22+2×2﹣5=5,故点P(2,5),
故点E(﹣1,2)或(﹣1,8);
当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,
综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).
8.(2020•武威)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若PC∥AB,求点P的坐标;
(3)连接AC,求△PAC面积的最大值及此时点P的坐标.
【分析】(1)抛物线y=ax2+bx﹣2,则c=﹣2,故OC=2,而OA=2OC=8OB,则OA=﹣4,OB,确定点A、B、C的坐标;即可求解;
(2)抛物线的对称轴为x,当PC∥AB时,点P、C的纵坐标相同,即可求解;
(3)△PAC的面积S=S△PHA+S△PHCPH×OA,即可求解.
【解析】(1)抛物线y=ax2+bx﹣2,则c=﹣2,故OC=2,
而OA=2OC=8OB,则OA=﹣4,OB,
故点A、B、C的坐标分别为(﹣4,0)、(,0)、(0,﹣2);
则y=a(x+4)(x)=a(x2x﹣2)=ax2+bx﹣2,故a=1,
故抛物线的表达式为:y=x2x﹣2;
(2)抛物线的对称轴为x,
当PC∥AB时,点P、C的纵坐标相同,根据函数的对称性得点P(,﹣2);
(3)过点P作PH∥y轴交AC于点H,
由点A、C的坐标得,直线AC的表达式为:yx﹣2,
则△PAC的面积S=S△PHA+S△PHCPH×OA4×(x﹣2﹣x2x+2)=﹣2(x+2)2+8,
∵﹣2<0,
∴S有最大值,当x=﹣2时,S的最大值为8,此时点P(﹣2,﹣5).
9.(2020•齐齐哈尔)综合与探究
在平面直角坐标系中,抛物线yx2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.
(1)求抛物线的解析式;
(2)直线AB的函数解析式为 y=x+4 ,点M的坐标为 (﹣2,﹣2) ,cos∠ABO= ;
连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为 (﹣2,2)或(0,4) ;
(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【分析】(1)将点A、C的坐标代入抛物线表达式即可求解;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则APAC或AC,即可求解;
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;
(4)分AC是边、AC是对角线两种情况,分别求解即可.
【解析】(1)将点A、C的坐标代入抛物线表达式得:,解得,
故直线AB的表达式为:yx2+2x;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),
由点A、B的坐标得,直线AB的表达式为:y=x+4;
则∠ABO=45°,故cos∠ABO;
对于yx2+2x,函数的对称轴为x=﹣2,故点M(﹣2,﹣2);
OP将△AOC的面积分成1:2的两部分,则APAC或AC,
则,即,解得:yP=2或4,
故点P(﹣2,2)或(0,4);
故答案为:y=x+4;(﹣2,﹣2);;(﹣2,2)或(0,4);
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,
点A′(4,0),
设直线A′M的表达式为:y=kx+b,则,解得,
故直线A′M的表达式为:yx,
令x=0,则y,故点Q(0,);
(4)存在,理由:
设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),
①当AC是边时,
点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),
即0±6=m,0±6=n,解得:m=n=±6,
故点N(6,6)或(﹣6,﹣6);
②当AC是对角线时,
由中点公式得:﹣4+2=m+0,6+0=n+0,
解得:m=﹣2,n=6,
故点N(﹣2,6);
综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).
10.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)PN=PQsin45°(m2m)(m﹣2)2,即可求解;
(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.
【解析】(1)将点A、B的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:yx2x+4;
(2)由抛物线的表达式知,点C(0,4),
由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
设点M(m,0),则点P(m,m2m+4),点Q(m,﹣m+4),
∴PQm2m+4+m﹣4m2m,
∵OB=OC,故∠ABC=∠OCB=45°,
∴∠PQN=∠BQM=45°,
∴PN=PQsin45°(m2m)(m﹣2)2,
∵0,故当m=2时,PN有最大值为;
(3)存在,理由:
点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
①当AC=CQ时,过点Q作QE⊥y轴于点E,
则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
解得:m=±(舍去负值),
故点Q(,);
②当AC=AQ时,则AQ=AC=5,
在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
故点Q(1,3);
③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m(舍去);
综上,点Q的坐标为(1,3)或(,).
11.(2020•上海)在平面直角坐标系xOy中,直线yx+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.
(1)求线段AB的长;
(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC,求这条抛物线的表达式;
(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.
【分析】(1)先求出A,B坐标,即可得出结论;
(2)设点C(m,m+5),则BC|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;
(3)将点A坐标代入抛物线解析式中得出b=﹣10a,代入抛物线解析式中得出顶点D坐标为(5,﹣25a),即可得出结论.
【解析】(1)针对于直线yx+5,
令x=0,y=5,
∴B(0,5),
令y=0,则x+5=0,
∴x=10,
∴A(10,0),
∴AB5;
(2)设点C(m,m+5),
∵B(0,5),
∴BC|m|,
∵BC,
∴|m|,
∴m=±2,
∵点C在线段AB上,
∴m=2,
∴C(2,4),
将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得,
∴,
∴抛物线yx2x;
(3)∵点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,
∴b=﹣10a,
∴抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,
∴抛物线的顶点D坐标为(5,﹣25a),
将x=5代入yx+5中,得y5+5,
∵顶点D位于△AOB内,
∴0<﹣25a,
∴a<0;
12.(2020•苏州)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).
(1)求b的值;
(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.
【分析】(1)抛物线的对称轴为x=2,即b=2,解得:b=﹣4,即可求解;
(2)求出点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,而四边形PBCQ为平行四边形,则PQ=BC=2,故x2﹣x1=2,即可求解.
【解析】(1)直线与抛物线的对称轴交于点D(2,﹣3),
故抛物线的对称轴为x=2,即b=2,解得:b=﹣4,
故抛物线的表达式为:y=x2﹣4x;
(2)把y=﹣3代入y=x2﹣4x并解得x=1或3,
故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,
∵四边形PBCQ为平行四边形,
∴PQ=BC=2,故x2﹣x1=2,
又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,
故|(x12﹣4x1)﹣(x22﹣4x2)=2,|x1+x2﹣4|=1.
∴x1+x2=5或x1+x2=﹣3,
由,解得;
由,解得.
13.(2020•台州)用各种盛水容器可以制作精致的家用流水景观(如图1).
科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h).
应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.
(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?
(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;
(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求垫高的高度及小孔离水面的竖直距离.
【分析】(1)将s2=4h(20﹣h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;
(2)设存在a,b,使两孔射出水的射程相同,则4a(20﹣a)=4b(20﹣b),利用因式分解变形即可得出答案;
(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.
【解析】(1)∵s2=4h(H﹣h),
∴当H=20cm时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,
∴当h=10cm时,s2有最大值400,
∴当h=10cm时,s有最大值20cm.
∴当h为10cm时,射程s有最大值,最大射程是20cm;
(2)∵s2=4h(20﹣h),
设存在a,b,使两孔射出水的射程相同,则有:
4a(20﹣a)=4b(20﹣b),
∴20a﹣a2=20b﹣b2,
∴a2﹣b2=20a﹣20b,
∴(a+b)(a﹣b)=20(a﹣b),
∴(a﹣b)(a+b﹣20)=0,
∴a﹣b=0,或a+b﹣20=0,
∴a=b或a+b=20;
(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4(20+m)2,
∴当hcm时,smax=20+m=20+16,
∴m=16cm,此时h18cm.
∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.
14.(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)
【分析】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;
(2)当y=0时,y(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=68.4,即可求解.
【解析】(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,
将x=0,y=1.9代入上式并解得:a,
故抛物线的表达式为:y(x﹣7)2+2.88;
当x=9时,y(x﹣7)2+2.88=2.8>2.24,
当x=18时,y(x﹣7)2+2.88=0.46>0,
故这次发球过网,但是出界了;
(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,
在Rt△OPQ中,OQ=18﹣1=17,
当y=0时,y(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),
∴OP=19,而OQ=17,
故PQ=68.4,
∵9﹣8.4﹣0.5=0.1,
∴发球点O在底线上且距右边线0.1米处.
15.(2020•宁波)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).
(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.
(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.
【分析】(1)利用待定系数法求出a,再求出点C的坐标即可解决问题.
(2)由题意点D平移的A,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.
【解析】(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,
∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,
∴A(2,1),
∵对称轴x=2,B,C关于x=2对称,
∴C(3,0),
∴当y>0时,1<x<3.
(2)∵D(0,﹣3),
∴点D平移的A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.
16.(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.
①求直线BD的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.
【分析】(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;
(2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;
②先确定出点Q的坐标,设点P(x,x2+x+4)(1<x<4),得出PG=x﹣1,GQx2+x+3,再利用三垂线构造出△PQG≌△QRH(AAS),得出RH=GQx2+x+3,QH=PG=x﹣1,进而得出R(x2+x+4,2﹣x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.
【解析】(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),
∴设抛物线的解析式为y=a(x+2)(x﹣4),
将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,
∴a,
∴抛物线的解析式为y(x+2)(x﹣4)x2+x+4;
(2)①如图1,
设直线AC的解析式为y=kx+b',
将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,
∴,
∴直线AC的解析式为y=2x+4,
过点E作EF⊥x轴于F,
∴OD∥EF,
∴△BOD∽△BFE,
∴,
∵B(4,0),
∴OB=4,
∵BD=5DE,
∴,
∴BFOB4,
∴OF=BF﹣OB4,
将x代入直线AC:y=2x+4中,得y=2×()+4,
∴E(,),
设直线BD的解析式为y=mx+n,
∴,
∴,
∴直线BD的解析式为yx+2;
②∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),
∴抛物线的对称轴为直线x=1,
∴点Q(1,1),如图2,
设点P(x,x2+x+4)(1<x<4),
过点P作PG⊥l于G,过点R作RH⊥l于H,
∴PG=x﹣1,GQx2+x+4﹣1x2+x+3,
∵PG⊥l,∴∠PGQ=90°,
∴∠GPQ+∠PQG=90°,
∵△PQR是以点Q为直角顶点的等腰直角三角形,
∴PQ=RQ,∠PQR=90°,
∴∠PQG+∠RQH=90°,
∴∠GPQ=∠HQR,
∴△PQG≌△QRH(AAS),
∴RH=GQx2+x+3,QH=PG=x﹣1,
∴R(x2+x+4,2﹣x),
由①知,直线BD的解析式为yx+2,
∴x=2或x=4(舍),
当x=2时,yx2+x+44+2+4=4,
∴P(2,4).
17.(2020•天津)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.
(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;
(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2.
①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;
②取EF的中点N,当m为何值时,MN的最小值是?
【分析】(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;
(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;
②得出CNEF.求出MCm,当MC,即m≤﹣1时,当MC,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.
【解析】(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.
∵抛物线经过点A(1,0),
∴0=1+b﹣3,
解得b=2,
∴抛物线的解析式为y=x2+2x﹣3.
∵y=x2+2x﹣3=(x+1)2﹣4,
∴抛物线的顶点坐标为(﹣1,﹣4).
(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,
∴0=a+b+m,0=am2+bm+m,即am+b+1=0.
∴a=1,b=﹣m﹣1.
∴抛物线的解析式为y=x2﹣(m+1)x+m.
根据题意得,点C(0,m),点E(m+1,m),
过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).
在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,
∴AEm,
∵AE=EF=2,
∴m=2,
解得m=﹣2.
此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.
∵点F在y轴上,
∴在Rt△EFC中,CF.
∴点F的坐标为(0,﹣2)或(0,﹣2).
②由N是EF的中点,得CNEF.
根据题意,点N在以点C为圆心、为半径的圆上,
由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,
∴在Rt△MCO中,MCm.
当MC,即m≤﹣1时,满足条件的点N在线段MC上.
MN的最小值为MC﹣NCm,解得m;
当MC,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC(m),
解得m.
∴当m的值为或时,MN的最小值是.
18.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m时,求点P的坐标;
②求m的最大值.
【分析】(1)函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),将点A、B、C的坐标代入抛物线表达式,即可求解;
(2)证明△BCD≌△BCM(AAS),则CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),即可求解;
(3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB,则,而S△BFP=mS△BAF,则,解得:mPN,即可求解.
【解析】(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),
将点A、B、C的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2﹣2x﹣3;
(2)设直线BE交y轴于点M,
从抛物线表达式知,抛物线的对称轴为x=2,
∵CD∥x轴交抛物线于点D,故点D(2,﹣3),
由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCD=45°,
∵BC恰好平分∠DBE,故∠MBC=∠DBC,
而BC=BC,
故△BCD≌△BCM(AAS),
∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),
设直线BE的表达式为:y=kx+b,则,解得,
故直线BE的表达式为:yx﹣1;
(3)过点P作PN∥x轴交BC于点N,
则△PFN∽△AFB,则,
而S△BFP=mS△BAF,则,解得:mPN,
①当m时,则PN=2,
设点P(t,t2﹣2t﹣3),
由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),
故t﹣5=t2﹣2t﹣3,
解得:t=1或2,故点P(2,﹣3)或(1,﹣4);
②mPN[t﹣(t2﹣2t)](t)2,
∵0,故m的最大值为.
19.(2020•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(,0),直线BC的解析式为yx+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a,即可求解;
(2)四边形BECD的面积S=S△BCE+S△BCDEF×OB(xD﹣xC)×BH,即可求解;
(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.
【解析】(1)直线BC的解析式为yx+2,令y=0,则x=3,令x=0,则y=2,
故点B、C的坐标分别为(3,0)、(0,2);
则y=ax2+bx+2=a(x)(x﹣3)=a(x2﹣2x﹣6)=ax2﹣2a﹣6a,
即﹣6a=2,解得:a,
故抛物线的表达式为:yx2x+2①;
(2)如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,
∵AD∥BC,则设直线AD的表达式为:y(x)②,
联立①②并解得:x=4,故点D(4,),
由点C、D的坐标得,直线CD的表达式为:yx+2,
当x=3时,yBCx+2=﹣2,即点H(3,﹣2),故BH=2,
设点E(x,x2x+2),则点F(x,x+2),
则四边形BECD的面积S=S△BCE+S△BCDEF×OB(xD﹣xC)×BH(x2x+2x﹣2)×342x2+3x+4,
∵0,故S有最大值,当x时,S的最大值为,此时点E(,);
(3)存在,理由:
yx2x+2(x)2,抛物线y=ax2+bx+2(a≠0)向左平移个单位,
则新抛物线的表达式为:yx2,
点A、E的坐标分别为(,0)、(,);设点M(,m),点N(n,s),sn2;
①当AE是平行四边形的边时,
点A向右平移个单位向上平移个单位得到E,同样点M(N)向右平移个单位向上平移个单位得到N(M),
即±n,
则sn2或,
故点N的坐标为(,)或(,);
②当AE是平行四边形的对角线时,
由中点公式得:n,解得:n,
sn2,
故点N的坐标(,);
综上点N的坐标为:(,)或(,)或(,).
20.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.
(1)求抛物线的解析式;
(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:
①求PD+PC的最小值;
②如图2,Q点为y轴上一动点,请直接写出DQOQ的最小值.
【分析】(1)抛物线的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即﹣3a=3,即可求解;
(2)①点C(﹣1,0)关于y轴的对称点为点B(1,0),连接BD交y轴于点P,则点P为所求点,PD+PC=PD+PB=DB为最小,即可求解;
②过点O作直线OK,使sin∠NOK,过点D作DK⊥OK于点K,交y轴于点Q,则点Q为所求点,则DQOQ=DQ+QK=DK为最小,即可求解.
【解析】(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,
即﹣3a=3,解得:a=﹣1,
故抛物线的表达式为:y=﹣x2﹣2x+3;
(2)由抛物线的表达式得,点M(﹣1,4),点N(0,3),
则tan∠MAC2,
则设直线AM的表达式为:y=2x+b,
将点A的坐标代入上式并解得:b=6,
故直线AM的表达式为:y=2x+6,
∵∠EFD=∠DHA=90°,∠EDF=∠ADH,
∴∠MAC=∠DEF,则tan∠DEF=2,则cos∠DEF,
设点E(x,﹣x2﹣2x+3),则点D(x,2x+6),
则FE=EDcos∠DEF=(﹣x2﹣2x+3﹣2x﹣6)(﹣x2﹣4x﹣3),
∵0,故EF有最大值,此时x=﹣2,故点D(﹣2,2);
①点C(﹣1,0)关于y轴的对称点为点B(1,0),连接BD交y轴于点P,则点P为所求点,
PD+PC=PD+PB=DB为最小,
则BD;
②过点O作直线OK,使sin∠NOK,过点D作DK⊥OK于点K,交y轴于点Q,则点Q为所求点,
DQOQ=DQ+QK=DK为最小值,
则直线OK的表达式为:yx,
∵DK⊥OK,故设直线DK的表达式为:yx+b,
将点D的坐标代入上式并解得:b=2,
则直线DK的表达式为:yx+2,
故点Q(0,2),
由直线KD的表达式知,QD与x负半轴的夹角(设为α)的正切值为,则cosα,
则DQ,而OQ(2),
则DQOQ为最小值(2).
21.(2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.
(1)如图1,当AC∥x轴时,
①已知点A的坐标是(﹣2,1),求抛物线的解析式;
②若四边形AOBD是平行四边形,求证:b2=4c.
(2)如图2,若b=﹣2,,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.
【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;
②先确定出抛物线的顶点坐标,进而得出DF,再判断出△AFD≌△BCO,得出DF=OC,即可得出结论;
(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),
判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出,进而求出m的值,得出点A的纵坐标为cc,进而判断出点M的坐标为(0,c),N(﹣1,c),进而得出CM,
DN,FNc,进而求出c,即可得出结论.
【解析】(1)①∵AC∥x轴,点A(﹣2,1),
∴C(0,1),
将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,
∴,
∴抛物线的解析式为y=﹣x2﹣2x+1;
②如图1,过点D作DE⊥x轴于E,交AB于点F,
∵AC∥x轴,
∴EF=OC=c,
∵点D是抛物线的顶点坐标,
∴D(,c),
∴DF=DE﹣EF=cc,
∵四边形AOBD是平行四边形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∵∠AFD=∠BCO=90°,
∴△AFD≌△BCO(AAS),
∴DF=OC,
∴c,
即b2=4c;
(2)如图2,∵b=﹣2.
∴抛物线的解析式为y=﹣x2﹣2x+c,
∴顶点坐标D(﹣1,c+1),
假设存在这样的点A使四边形AOBD是平行四边形,
设点A(m,﹣m2﹣2m+c)(m<0),
过点D作DE⊥x轴于点E,交AB于F,
∴∠AFD=∠EFC=∠BCO,
∵四边形AOBD是平行四边形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∴△AFD≌△BCO(AAS),
∴AF=BC,DF=OC,
过点A作AM⊥y轴于M,交DE于N,
∴DE∥CO,
∴△ANF∽△AMC,
∴,
∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,
∴,
∴,
∴点A的纵坐标为﹣()2﹣2×()+c=cc,
∵AM∥x轴,
∴点M的坐标为(0,c),N(﹣1,c),
∴CM=c﹣(c),
∵点D的坐标为(﹣1,c+1),
∴DN=(c+1)﹣(c),
∵DF=OC=c,
∴FN=DN﹣DFc,
∵,
∴,
∴c,
∴c,
∴点A纵坐标为,
∴A(,),
∴存在这样的点A,使四边形AOBD是平行四边形.
22.(2020•重庆)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)△PAB面积SPH×(xB﹣xA)(x﹣1﹣x2﹣4x+1)×(0+3)x2x,即可求解;
(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.
【解析】(1)将点A、B的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2+4x﹣1;
(2)设直线AB的表达式为:y=kx+t,则,解得,
故直线AB的表达式为:y=x﹣1,
过点P作y轴的平行线交AB于点H,
设点P(x,x2+4x﹣1),则H(x,x﹣1),
△PAB面积SPH×(xB﹣xA)(x﹣1﹣x2﹣4x+1)×(0+3)x2x,
∵0,故S有最大值,当x时,S的最大值为;
(3)抛物线的表达式为:y=x2+4x﹣1=(x+2)2﹣5,
则平移后的抛物线表达式为:y=x2﹣5,
联立上述两式并解得:,故点C(﹣1,﹣4);
设点D(﹣2,m)、点E(s,t),而点B、C的坐标分别为(0,﹣1)、(﹣1,﹣4);
①当BC为菱形的边时,
点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),
即﹣2+1=s且m+3=t①或﹣2﹣1=s且m﹣3=t②,
当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,
当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,
联立①③并解得:s=﹣1,t=2或﹣4(舍去﹣4),故点E(﹣1,3);
联立②④并解得:s=1,t=﹣4±,故点E(1,﹣4)或(1,﹣4);
②当BC为菱形的的对角线时,
则由中点公式得:﹣1=s﹣2且﹣4﹣1=m+t⑤,
此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,
联立⑤⑥并解得:s=1,t=﹣3,
故点E(1,﹣3),
综上,点E的坐标为:(﹣1,2)或(﹣3,﹣4)或(﹣3,﹣4)或(1,﹣3).
23.(2020•黔西南州)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.
(1)求抛物线的解析式和顶点坐标;
(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;
(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.
【分析】(1)将点A,B坐标代入抛物线解析式中,解方程组即可得出结论;
(2)先求出OA=OC=6,进而得出∠OAC=45°,进而判断出PD=PE,即可得出当PE的长度最大时,PE+PD取最大值,设出点E坐标,表示出点P坐标,建立PE=﹣t2+6t=﹣(t﹣3)2+9,即可得出结论;
(3)先判断出NF∥x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.
【解析】(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(﹣1,0),
∴,
∴,
∴抛物线的解析式为y=﹣x2+5x+6=﹣(x)2,
∴抛物线的解析式为y=﹣x2+5x+6,顶点坐标为(,);
(2)由(1)知,抛物线的解析式为y=﹣x2+5x+6,
∴C(0,6),
∴OC=6,
∵A(6,0),
∴OA=6,
∴OA=OC,
∴∠OAC=45°,
∵PD平行于x轴,PE平行于y轴,
∴∠DPE=90°,∠PDE=∠DAO=45°,
∴∠PED=45°,
∴∠PDE=∠PED,
∴PD=PE,
∴PD+PE=2PE,
∴当PE的长度最大时,PE+PD取最大值,
∵A(6,0),C(0,6),
∴直线AC的解析式为y=﹣x+6,
设E(t,﹣t+6)(0<t<6),则P(t,﹣t2+5t+6),
∴PE=﹣t2+5t+6﹣(﹣t+6)=﹣t2+6t=﹣(t﹣3)2+9,
当t=3时,PE最大,此时,﹣t2+5t+6=12,
∴P(3,12);
(3)如图(2),设直线AC与抛物线的对称轴l的交点为F,连接NF,
∵点F在线段MN的垂直平分线AC上,
∴FM=FN,∠NFC=∠MFC,
∵l∥y轴,
∴∠MFC=∠OCA=45°,
∴∠MFN=∠NFC+∠MFC=90°,
∴NF∥x轴,
由(2)知,直线AC的解析式为y=﹣x+6,
当x时,y,
∴F(,),
∴点N的纵坐标为,
设N的坐标为(m,﹣m2+5m+6),
∴﹣m2+5m+6,解得,m或m,
∴点N的坐标为(,)或(,).
24.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为 PA=PM ,其理由为: 线段垂直平分线上的点与这条线段两个端点的距离相等 .
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标
…
(﹣2,0)
(0,0)
(2,0)
(4,0)
…
P的坐标
…
(﹣2,﹣2)
(0,﹣1)
(2,﹣2)
(4,﹣5)
…
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 抛物线 .
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.
【分析】(1)由题意可得GH是AM的垂直平分线,由线段垂直平分线的性质可求解;
(2)由(1)可知:PA=PM,利用两点距离公式可求点P坐标;
(3)依照题意,画出图象;
(4)由两点距离公式可得﹣y,可求y关于x的函数解析式;
(5)由两点距离公式可求BC=OB=OC,可证△BOC是等边三角形,可得∠BOC=60°,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,可得∠BEC=30°,则当点D在点E下方时,∠BDC<30°,求出点E的纵坐标即可求解.
【解析】(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,
∴GH是AM的垂直平分线,
∵点P是GH上一点,
∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),
故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;
(2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)
∵PA=PM,
∴﹣a,
∴a=﹣2,
∴点P(﹣2,﹣2),
当点M(4,0)时,设点P(4,b),(b<0)
∵PA=PM,
∴﹣b,
∴b=﹣5,
∴点P(4,﹣5),
故答案为:(﹣2,﹣2),(4,﹣5);
(3)依照题意,画出图象,
猜想曲线L的形状为抛物线,
故答案为:抛物线;
(4)∵PA=PM,点P的坐标是(x,y),(y<0),
∴﹣y,
∴yx2﹣1;
(5)∵点B(﹣1,),C(1,),
∴BC=2,OB2,OC2,
∴BC=OB=OC,
∴△BOC是等边三角形,
∴∠BOC=60°,
如图3,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,
∴∠BEC=30°,
设点E(m,n),
∵点E在抛物线上,
∴nm2﹣1,
∵OE=OB=2,
∴2,
∴n1=2﹣2,n2=2+2(舍去),
如图3,可知当点D在点E下方时,∠BDC<30°,
∴点D的纵坐标yD的取值范围为yD<2﹣2.
25.(2020•成都)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).
(1)求抛物线的函数表达式;
(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值;
(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
【分析】(1)设抛物线的解析式为为y=a(x﹣1)(x﹣4),将点C的坐标代可求得a的值,从而得到抛物线的解析式;
(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,证明△AKE∽△DFE,得出,则,求出直线BC的解析式为yx﹣2,设D(m,m﹣2),则F(m,m﹣2),可得出的关系式,由二次函数的性质可得出结论;
(3)设P(a,),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,得出Q(a,a﹣2),将点Q的坐标代入抛物线的解析式求得a的值即可,②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(a,2),代入抛物线的解析可得出答案.
【解析】(1)设抛物线的解析式为y=a(x+1)(x﹣4).
∵将C(0,﹣2)代入得:4a=2,解得a,
∴抛物线的解析式为y(x+1)(x﹣4),即yx2x﹣2.
(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,
∴AK∥DG,
∴△AKE∽△DFE,
∴,
∴,
设直线BC的解析式为y=kx+b,
∴,解得,
∴直线BC的解析式为yx﹣2,
∵A(﹣1,0),
∴y2,
∴AK,
设D(m,m﹣2),则F(m,m﹣2),
∴DFm+22m.
∴m.
∴当m=2时,有最大值,最大值是.
(3)符合条件的点P的坐标为()或().
∵l∥BC,
∴直线l的解析式为yx,
设P(a,),
①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,
∵A(﹣1,0),C(0,﹣2),B(4,0),
∴AC,AB=5,BC=2,
∵AC2+BC2=AB2,
∴∠ACB=90°,
∵△PQB∽△CAB,
∴,
∵∠QMP=∠BNP=90°,
∴∠MQP+∠MPQ=90°,∠MPQ+∠PBN=90°,
∴∠MQP=∠PBN,
∴△QPM∽△PBN,
∴,
∴QM,PM(a﹣4)a﹣2,
∴MN=a﹣2,BN﹣QM=a﹣4a﹣4,
∴Q(a,a﹣2),
将点Q的坐标代入抛物线的解析式得a﹣2=a﹣2,
解得a=0(舍去)或a.
∴P().
②当点P在直线BQ左侧时,
由①的方法同理可得点Q的坐标为(a,2).
此时点P的坐标为().
26.(2020•乐山)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;
②连结PB,求PC+PB的最小值.
【分析】(1)设抛物线的解析式为:y=a(x+1)(x﹣5),可得对称轴为直线x=2,由锐角三角函数可求点C坐标,代入解析式可求解析式;
(2)①先求出直线BC解析式,设P(2,t),可得点E(5t,t),点,可求EF的长,由三角形面积公式和二次函数性质可求解;
②根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,过点P作PG⊥AC于G,可得PGPC,可得,过点B作BH⊥AC于点H,则PG+PH≥BH,即BH是PC+PB的最小值,由三角形面积公式可求解.
【解析】(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),
∵抛物线的对称轴为直线x=2,
∴D(2,0),
又∵,
∴CD=BD•tan∠CBD=4,
即C(2,4),
代入抛物线的解析式,得4=a(2+1)(2﹣5),
解得 ,
∴二次函数的解析式为 x2;
(2)①设P(2,t),其中0<t<4,
设直线BC的解析式为 y=kx+b,
∴,
解得
即直线BC的解析式为 ,
令y=t,得:,
∴点E(5t,t),
把 代入,得 ,
即,
∴,
∴△BCF的面积EF×BD(t),
∴当t=2时,△BCF的面积最大,且最大值为;
②如图,连接AC,根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,
∴,
过点P作PG⊥AC于G,则在Rt△PCG中,,
∴,
过点B作BH⊥AC于点H,则PG+PH≥BH,
∴线段BH的长就是的最小值,
∵,
又∵,
∴,
即,
∴的最小值为.
27.(2020•铜仁市)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
【分析】(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;
(2)过点P作PF∥y轴,交BC于点F,利用二次函数图象上点的坐标特征可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),进而可得出PF的长度,利用三角形的面积公式可得出S△PBC=﹣3m2+9m,配方后利用二次函数的性质即可求出△PBC面积的最大值;
(3)分两种不同情况,当点M位于点C上方或下方时,画出图形,由相似三角形的性质得出方程,求出点M,点N的坐标即可.
【解析】(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,
得:,解得:,
∴抛物线的解析式为y=﹣2x2+4x+6.
(2)过点P作PF∥y轴,交BC于点F,如图1所示.
当x=0时,y=﹣2x2+4x+6=6,
∴点C的坐标为(0,6).
设直线BC的解析式为y=kx+c,
将B(3,0)、C(0,6)代入y=kx+c,得:
,解得:,
∴直线BC的解析式为y=﹣2x+6.
∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,
∴点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),
∴PF=﹣2m2+4m+6﹣(﹣2m+6)=﹣2m2+6m,
∴S△PBCPF•OB=﹣3m2+9m=﹣3(m)2,
∴当m时,△PBC面积取最大值,最大值为.
∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,
∴0<m<3.
(3)存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似.
如图2,∠CMN=90°,当点M位于点C上方,过点M作MD⊥y轴于点D,
∵∠CDM=∠CMN=90°,∠DCM=∠NCM,
∴△MCD∽△NCM,
若△CMN与△OBC相似,则△MCD与△OBC相似,
设M(a,﹣2a2+4a+6),C(0,6),
∴DC=﹣2a2+4a,DM=a,
当时,△COB∽△CDM∽△CMN,
∴,
解得,a=1,
∴M(1,8),
此时NDDM,
∴N(0,),
当时,△COB∽△MDC∽△NMC,
∴,
解得a,
∴M(,),
此时N(0,).
如图3,当点M位于点C的下方,
过点M作ME⊥y轴于点E,
设M(a,﹣2a2+4a+6),C(0,6),
∴EC=2a2﹣4a,EM=a,
同理可得:或2,△CMN与△OBC相似,
解得a或a=3,
∴M(,)或M(3,0),
此时N点坐标为(0,)或(0,).
综合以上得,M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M(3,0),N(0,),使得∠CMN=90°,且△CMN与△OBC相似.
28.(2020•嘉兴)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.
(1)求该抛物线的函数表达式.
(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.
①求OD的长.
②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).
【分析】(1)设y=a(x﹣0.4)2+3.32(a≠0),将A(0,3)代入求解即可得出答案;
(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,解方程求出x,即可得出OD=1m;
②东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MD=h1,NF=h2,当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD于点P,证明△MPN∽△NEH,得出,则NH=5MP.分不同情况:(Ⅰ)当0≤t≤0.3时,(Ⅱ)当0.3<t≤0.65时,(Ⅲ)当0.65<t≤1时,分别求出t的范围可得出答案.
【解析】(1)设y=a(x﹣0.4)2+3.32(a≠0),
把x=0,y=3代入,解得a=﹣2,
∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.
(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,
化简得(x﹣0.4)2=0.36,
解得x1=﹣0.2(舍去),x2=1,
∴OD=1m.
②东东的直线传球能越过小戴的拦截传到点E.
由图1可得,当0≤t≤0.3时,h2=2.2.
当0.3<t≤1.3时,h2=﹣2(t﹣0.8)2+2.7.
当h1﹣h2=0时,t=0.65,
东东在点D跳起传球与小戴在点F处拦截的示意图如图2,
设MD=h1,NF=h2,
当点M,N,E三点共线时,过点E作EG⊥MD于点G,交NF于点H,过点N作NP⊥MD于点P,
∴MD∥NF,PN∥EG,
∴∠M=∠HEN,∠MNP=∠NEH,
∴△MPN∽△NEH,
∴,
∵PN=0.5,HE=2.5,
∴NH=5MP.
(Ⅰ)当0≤t≤0.3时,
MP=﹣2(t﹣0.5)2+2.7﹣2.2=﹣2(t﹣0.5)2+0.5,
NH=2.2﹣1.3=0.9.
∴5[﹣2(t﹣0.5)2+0.5]=0.9,
整理得(t﹣0.5)2=0.16,
解得(舍去),,
当0≤t≤0.3时,MP随t的增大而增大,
∴.
(Ⅱ)当0.3<t≤0.65时,MP=MD﹣NF=﹣2(t﹣0.5)2+2.7﹣[﹣2(t﹣0.8)2+2.7]=﹣1.2t+0.78,
NH=NF﹣HF=﹣2(t﹣0.8)2+2.7﹣1.3=﹣2(t﹣0.8)2+1.4,
∴﹣2(t﹣0.8)2+1.4=5×(﹣1.2t+0.78),
整理得t2﹣4.6t+1.89=0,
解得,(舍去),,
当0.3<t≤0.65时,MP随t的增大而减小,
∴.
(Ⅲ)当0.65<t≤1时,h1<h2,不可能.
给上所述,东东在起跳后传球的时间范围为.
29.(2020•黔东南州)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;
(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;
(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.
【解析】(1)∵抛物线的顶点为(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)2﹣4,
将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,
∴a=1,
∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;
(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,
令y=0,则x2﹣2x﹣3=0,
∴x=﹣1或x=3,
∴B(3,0),A(﹣1,0),
令x=0,则y=﹣3,
∴C(0,﹣3),
∴AC,
设点E(0,m),则AE,CE=|m+3|,
∵△ACE是等腰三角形,
∴①当AC=AE时,,
∴m=3或m=﹣3(点C的纵坐标,舍去),
∴E(0,3),
②当AC=CE时,|m+3|,
∴m=﹣3±,
∴E(0,﹣3)或(0,﹣3),
③当AE=CE时,|m+3|,
∴m,
∴E(0,),
即满足条件的点E的坐标为(0,3)、(0,﹣3)、(0,﹣3)、(0,);
(3)如图,存在,∵D(1,﹣4),
∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,
∴点Q的纵坐标为4,
设Q(t,4),
将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,
∴t=1+2或t=1﹣2,
∴Q(1+2,4)或(1﹣2,4),
分别过点D,Q作x轴的垂线,垂足分别为F,G,
∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),
∴FB=PG=3﹣1=2,
∴点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,
即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).
30.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
(1)求二次函数的解析式.
(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ,求点K的坐标.
【分析】(1)设二次函数的解析式为y=a(x+2)(x﹣4),将点C坐标代入可求解;
(2)利用中点坐标公式可求P(﹣1,2),点Q(2,2),由勾股定理可求BC的长,由待定系数法可求PB解析式,设点M(c,c),由两点距离公式可得(c﹣2)2+(c2)2=8,可求c=4或,即可求解;
(3)过点D作DE⊥BC于点E,设直线DK与BC交于点N,先求出DE=BE,由锐角三角函数可求NE,分DK与射线EC交于点N(m,4﹣m)和DK与射线EB交于N(m,4﹣m)两种情况讨论,求出直线DK解析式,联立方程组可求点K坐标.
【解析】(1)∵二次函数图象过点B(4,0),点A(﹣2,0),
∴设二次函数的解析式为y=a(x+2)(x﹣4),
∵二次函数图象过点C(0,4),
∴4=a(0+2)(0﹣4),
∴a,
∴二次函数的解析式为y(x+2)(x﹣4)x2+x+4;
(2)存在,
理由如下:如图1,取BC中点Q,连接MQ,
∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,
∴P(﹣1,2),点Q(2,2),BC4,
设直线BP解析式为:y=kx+b,
由题意可得:,
解得:
∴直线BP的解析式为:yx,
∵∠BMC=90°
∴点M在以BC为直径的圆上,
∴设点M(c,c),
∵点Q是Rt△BCM的中点,
∴MQBC=2,
∴MQ2=8,
∴(c﹣2)2+(c2)2=8,
∴c=4或,
当c=4时,点B,点M重合,即c=4,不合题意舍去,
∴c,则点M坐标(,),
故线段PB上存在点M(,),使得∠BMC=90°;
(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,
∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,
∴点D(1,0),OB=OC=4,AB=6,BD=3,
∴∠OBC=45°,
∵DE⊥BC,
∴∠EDB=∠EBD=45°,
∴DE=BE,
∵点B(4,0),C(0,4),
∴直线BC解析式为:y=﹣x+4,
设点E(n,﹣n+4),
∴﹣n+4,
∴n,
∴点E(,),
在Rt△DNE中,NE,
①若DK与射线EC交于点N(m,4﹣m),
∵NE=BN﹣BE,
∴(4﹣m),
∴m,
∴点N(,),
∴直线DK解析式为:y=4x﹣4,
联立方程组可得:,
解得:或,
∴点K坐标为(2,4)或(﹣8,﹣36);
②若DK与射线EB交于N(m,4﹣m),
∵NE=BE﹣BN,
∴(4﹣m),
∴m,
∴点N(,),
∴直线DK解析式为:yx,
联立方程组可得:,
解得:或,
∴点K坐标为(,)或(,),
综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).
31.(2020•遂宁)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.
(1)求抛物线的解析式.
(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.
(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;
(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求S△ABD2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;
(3)分两种情况讨论,利用平行四边形的性质可求解.
【解析】(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),
∴设抛物线解析式为:y=a(x﹣1)(x﹣3),
∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),
∴6=a(0﹣1)(0﹣3),
∴a=2,
∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;
(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,
∴顶点M的坐标为(2,﹣2),
∵抛物线的顶点M与对称轴l上的点N关于x轴对称,
∴点N(2,2),
设直线AN解析式为:y=kx+b,
由题意可得:,
解得:,
∴直线AN解析式为:y=2x﹣2,
联立方程组得:,
解得:,,
∴点D(4,6),
∴S△ABD2×6=6,
设点E(m,2m﹣2),
∵直线BE将△ABD的面积分为1:2两部分,
∴S△ABES△ABD=2或S△ABES△ABD=4,
∴2×(2m﹣2)=2或2×(2m﹣2)=4,
∴m=2或3,
∴点E(2,2)或(3,4);
(3)若AD为平行四边形的边,
∵以A、D、P、Q为顶点的四边形为平行四边形,
∴AD=PQ,
∴xD﹣xA=xP﹣xQ或xD﹣xA=xQ﹣xP,
∴xP=4﹣1+2=5或xP=2﹣4+1=﹣1,
∴点P坐标为(5,16)或(﹣1,16);
若AD为平行四边形的对角线,
∵以A、D、P、Q为顶点的四边形为平行四边形,
∴AD与PQ互相平分,
∴,
∴xP=3,
∴点P坐标为(3,0),
综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.
32.(2020•泰州)如图,二次函数y1=a(x﹣m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线PA与C2在y轴左侧的交点为B.
(1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;
(2)设直线PA与y轴所夹的角为α.
①当α=45°,且A为C1的顶点时,求am的值;
②若α=90°,试说明:当a、m、n各自取不同的值时,的值不变;
(3)若PA=2PB,试判断点A是否为C1的顶点?请说明理由.
【分析】(1)利用待定系数法解决问题即可.
(2)①如图1中,过点A作AN⊥x轴于N,过点P作PM⊥AN于M.证明AM=PM=m,根据AM+MN=AM+OP=AN,构建关系式即可解决问题.
②如图2中,由题意AB⊥y中,求出PA,PB的长即可解决问题.
(3))如图3中,过点A作AH⊥x轴于H,过点P作PK⊥AH于K,过点B作BE⊥KP交KP的延长线于E.设B(b,6ab2+n),由PA=2PB,推出A[﹣2b,a(﹣2b﹣m)2+n],由BE∥AK,推出,推出AK=2BE,由此构建关系式,证明m=﹣2b即可解决问题.
【解析】(1)由题意m=2,n=4,
∴y1=a(x﹣2)2+4,
把(0,2)代入得到a.
(2)①如图1中,过点A作AN⊥x轴于N,过点P作PM⊥AN于M.
∵y1=a(x﹣m)2+n=ax2﹣2amx+am2+n,
∴P(0,am2+n),
∵A(m,n),
∴PM=m,AN=n,
∵∠APM=45°,
∴AM=PM=m,
∴m+am2+n=n,
∵m>0,
∴am=﹣1.
②如图2中,由题意AB⊥y中,
∵P(0,am2+n),
当y=am2+n时,am2+n=6ax2+n,
解得x=±m,
∴B(m,am2+n),
∴PBm,
∵AP=2m,
∴2.
(3)如图3中,过点A作AH⊥x轴于H,过点P作PK⊥AH于K,过点B作BE⊥KP交KP的延长线于E.
设B(b,6ab2+n),
∵PA=2PB,
∴A[﹣2b,a(﹣2b﹣m)2+n],
∵BE∥AK,
∴,
∴AK=2BE,
∴a(﹣2b﹣m)2+n﹣am2﹣n=2(am2+n﹣6ab2﹣n),
整理得:m2﹣2bm﹣8b2=0,
∴(m﹣4b)(m+2b)=0,
∵m﹣4b>0,
∴m+2b=0,
∴m=﹣2b,
∴A(m,n),
∴点A是抛物线C1的顶点.
33.(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:yx2x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.
(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;
(2)当BP﹣CP的值最大时,求点P的坐标;
(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.
【分析】(1)由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),利用待定系数法求出a即可解决问题.
(2)由题意BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x的交点.
(3)由题意,顶点D(,),∠PDQ不可能是直角,第一种情形:当∠DPQ=90°时,①如图3﹣1中,当△QDP∽△ABC时.②如图3﹣2中,当△DQP∽△ABC时.第二种情形:当∠DQP=90°.①如图3﹣3中,当△PDQ∽△ABC时.②当△DPQ∽△ABC时,分别求解即可解决问题.
【解析】(1)当y=0时,x2x﹣2=0,解得x=﹣1或4,
∴A(﹣1,0),B(4,0),C(0,2),
由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),
把(2,﹣12)代入y=a(x+1)(x﹣4),
﹣12=﹣6a,
解得a=2,
∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.
(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),
∴抛物线L1,L2的对称轴是直线x,
∴点P在直线x上,
∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,
此时点P为直线AC与直线x的交点,
∵直线AC的解析式为y=﹣2x﹣2,
∴P(,﹣5)
(3)由题意,AB=5,CB=2,CA,
∴AB2=BC2+AC2,
∴∠ACB=90°,CB=2CA,
∵yx2x﹣2(x)2,
∴顶点D(,),
由题意,∠PDQ不可能是直角,
第一种情形:当∠DPQ=90°时,
①如图3﹣1中,当△QDP∽△ABC时,,
设Q(x,x2x﹣2),则P(,x2x﹣2),
∴DPx2x﹣2﹣()x2x,QP=x,
∵PD=2QP,
∴2x﹣3x2x,解得x或(舍弃),
∴P(,).
②如图3﹣2中,当△DQP∽△ABC时,同法可得QO=2PD,
xx2﹣3x,
解得x或(舍弃),
∴P(,).
第二种情形:当∠DQP=90°.
①如图3﹣3中,当△PDQ∽△ABC时,,
过点Q作QM⊥PD于M.则△QDM∽△PDQ,
∴,由图3﹣1可知,M(,),Q(,),
∴MD=8,MQ=4,
∴DQ=4,
由,可得PD=10,
∵D(,)
∴P(,).
②当△DPQ∽△ABC时,过点Q作QM⊥PD于M.
同法可得M(,),Q(,),
∴DM,QM=1,QD,
由,可得PD,
∴P(,).
34.(2020•达州)如图,在平面直角坐标系xOy中,已知直线yx﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MNON的最小值.
【分析】(1)先求出点A,点B坐标,利用待定系数法可求解析式;
(2)分两种情况讨论,利用平行线之间的距离相等,可求OP解析式,EP''的解析式,联立方程组可求解;
(3)过点M作MF⊥AC,交AB于F,设点M(m,m2m﹣2),则点F(m,m﹣2),可求MF的长,由三角形面积公式可求△MAB的面积=﹣(m﹣2)2+4,利用二次函数的性质可求点M坐标,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,由直角三角形的性质可得KNON,可得MNON=MN+KN,则当点M,点N,点K三点共线,且垂直于OK时,MNON有最小值,即最小值为MP,由直角三角形的性质可求解.
【解析】(1)∵直线yx﹣2与x轴交于点A,与y轴交于点B,
∴点A(4,0),点B(0,﹣2),
设抛物线解析式为:y=a(x+1)(x﹣4),
∴﹣2=﹣4a,
∴a,
∴抛物线解析式为:y(x+1)(x﹣4)x2x﹣2;
(2)如图,当点P在直线AB上方时,过点O作OP∥AB,交抛物线与点P,
∵OP∥AB,
∴△ABP和△ABP是等底等高的两个三角形,
∴S△PAB=S△ABO,
∵OP∥AB,
∴直线PO的解析式为yx,
联立方程组可得,
解得:或,
∴点P(2+2,1)或(2﹣2,1);
当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',
∴AB∥EP''∥OP,OB=BE,
∴S△ABP''=S△ABO,
∵EP''∥AB,且过点E(0,﹣4),
∴直线EP''解析式为yx﹣4,
联立方程组可得,
解得,
∴点P''(2,﹣3),
综上所述:点P坐标为(2+2,1)或(2﹣2,1)或(2,﹣3);
(3)如图2,过点M作MF⊥AC,交AB于F,
设点M(m,m2m﹣2),则点F(m,m﹣2),
∴MFm﹣2﹣(m2m﹣2)(m﹣2)2+2,
∴△MAB的面积4×[(m﹣2)2+2]=﹣(m﹣2)2+4,
∴当m=2时,△MAB的面积有最大值,
∴点M(2,﹣3),
如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,
∵∠KOB=30°,KN⊥OK,
∴KNON,
∴MNON=MN+KN,
∴当点M,点N,点K三点共线,且垂直于OK时,MNON有最小值,即最小值为MP,
∵∠KOB=30°,
∴直线OK解析式为yx,
当x=2时,点Q(2,2),
∴QM=23,
∵OB∥QM,
∴∠PQM=∠PON=30°,
∴PMQM,
∴MNON的最小值为.
35.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,),点F(2,1)为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.
【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.
(2)由题意P(m,m2m),求出d2,PF2(用m表示)即可解决问题.
(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.
【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,
∵抛物线经过B(0,),
∴4a﹣1,
∴a,
∴抛物线的解析式为y(x﹣2)2﹣1.
(2)证明:∵P(m,n),
∴n(m﹣2)2﹣1m2m,
∴P(m,m2m),
∴dm2m(﹣3)m2m,
∵F(2,1),
∴PF,
∵d2m4m3m2m,PF2m4m3m2m,
∴d2=PF2,
∴PF=d.
(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.
∵△DFQ的周长=DF+DQ+FQ,DF是定值2,
∴DQ+QF的值最小时,△DFQ的周长最小,
∵QF=QH,
∴DQ+DF=DQ+QH,
根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,
∴DQ+QH的最小值为3,
∴△DFQ的周长的最小值为23,此时Q(4,)
36.(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
(1)求⊙C的标准方程;
(2)试判断直线AE与⊙C的位置关系,并说明理由.
【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt△BCM中,利用勾股定理求出半径以及等C的坐标即可解决问题.
(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.
【解析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.
∵与y轴相切于点D(0,4),
∴CD⊥OD,
∵∠CDO=∠CMO=∠DOM=90°,
∴四边形ODCM是矩形,
∴CM=OD=4,CD=OM=r,
∵B(8,0),
∴OB=8,
∴BM=8﹣r,
在Rt△CMB中,∵BC2=CM2+BM2,
∴r2=42+(8﹣r)2,
解得r=5,
∴C(5,4),
∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.
(2)结论:AE是⊙C的切线.
理由:连接AC,CE.
∵CM⊥AB,
∴AM=BM=3,
∴A(2,0),B(8,0)
设抛物线的解析式为y=a(x﹣2)(x﹣8),
把D(0,4)代入y=a(x﹣2)(x﹣8),可得a,
∴抛物线的解析式为y(x﹣2)(x﹣8)x2x+4(x﹣5)2,
∴抛物线的顶点E(5,),
∵AE,CE=4,AC=5,
∴EC2=AC2+AE2,
∴∠CAE=90°,
∴CA⊥AE,
∴AE是⊙C的切线.
37.(2020•甘孜州)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0).
(1)求抛物线的解析式;
(2)若P为线段AB上一点,∠APO=∠ACB,求AP的长;
(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
【分析】(1)利用待定系数法解决问题即可.
(2)求出AB,OA,AC,利用相似三角形的性质求解即可.
(3)分两种情形:①PA为平行四边形的边时,点M的横坐标可以为±2,求出点M的坐标即可解决问题.②当AP为平行四边形的对角线时,点M″的横坐标为﹣4,求出点M″的坐标即可解决问题.
【解析】(1)由题意抛物线经过B(0,3),C(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+3
(2)对于抛物线y=﹣x2﹣2x+3,令y=0,解得x=﹣3或1,
∴A(﹣3,0),
∵B(0,3),C(1,0),
∴OA=OB=3OC=1,AB=3,
∵∠APO=∠ACB,∠PAO=∠CAB,
∴△PAO∽△CAB,
∴,
∴,
∴AP=2.
(3)由(2)可知,P(﹣1,2),AP=2,
①当AP为平行四边形的边时,点N的横坐标为2或﹣2,
∴N(﹣2,3),N′(2,﹣5),
②当AP为平行四边形的对角线时,点N″的横坐标为﹣4,
∴N″(﹣4,﹣5),
综上所述,满足条件的点N的坐标为(﹣2,3)或(2,﹣5)或(﹣4,﹣5).
38.(2020•聊城)如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.
【分析】(1)由题意得出方程组,求出二次函数的解析式为y=﹣x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可
(2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),由DE=PF得出方程,解方程进而得出答案;
(3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则,得出方程,解方程即可.
【解析】(1)将点A(﹣1,0),B(4,0),代入y═ax2+bx+4,
得:,
解得:,
∴二次函数的表达式为:y=﹣x2+3x+4,
当x=0时,y=4,
∴C(0,4),
设BC所在直线的表达式为:y=mx+n,
将C(0,4)、B(4,0)代入y=mx+n,
得:,
解得:,
∴BC所在直线的表达式为:y=﹣x+4;
(2)∵DE⊥x轴,PF⊥x轴,
∴DE∥PF,
只要DE=PF,四边形DEFP即为平行四边形,
∵y=﹣x2+3x+4=﹣(x)2,
∴点D的坐标为:(,),
将x代入y=﹣x+4,即y4,
∴点E的坐标为:(,),
∴DE,
设点P的横坐标为t,
则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),
∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
由DE=PF得:﹣t2+4t,
解得:t1(不合题意舍去),t2,
当t时,﹣t2+3t+4=﹣()2+34,
∴点P的坐标为(,);
(3)存在,理由如下:
如图2所示:
由(2)得:PF∥DE,
∴∠CED=∠CFP,
又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
∴∠PCF≠∠DCE,
∴只有∠PCF=∠CDE时,△PCF∽△CDE,
∴,
∵C(0,4)、E(,),
∴CE,
由(2)得:DE,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),
∴CFt,
∴,
∵t≠0,
∴(﹣t+4)=3,
解得:t,
当t时,﹣t2+3t+4=﹣()2+34,
∴点P的坐标为:(,).
39.(2020•常德)如图,已知抛物线y=ax2过点A(﹣3,).
(1)求抛物线的解析式;
(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;
(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.
【分析】(1)利用待定系数法即可解决问题.
(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.
(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.
【解析】(1)把点A(﹣3,)代入y=ax2,
得到9a,
∴a,
∴抛物线的解析式为yx2.
(2)设直线l的解析式为y=kx+b,则有,
解得,
∴直线l的解析式为yx,
令x=0,得到y,
∴C(0,),
由,解得或,
∴B(1,),
如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,
∴,,
∴,
即MC2=MA•MB.
(3)如图2中,设P(t,t2)
∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,
∴PD∥OC,PD=OC,
∴D(t,t),
∴|t2﹣(t)|,
整理得:t2+2t﹣6=0或t2+2t=0,
解得t=﹣1或﹣1或﹣2或0(舍弃),
∴P(﹣1,2)或(﹣1,2)或(﹣2,1).
40.(2020•无锡)在平面直角坐标系中,O为坐标原点,直线OA交二次函数yx2的图象于点A,∠AOB=90°,点B在该二次函数的图象上,设过点(0,m)(其中m>0)且平行于x轴的直线交直线OA于点M,交直线OB于点N,以线段OM、ON为邻边作矩形OMPN.
(1)若点A的横坐标为8.
①用含m的代数式表示M的坐标;
②点P能否落在该二次函数的图象上?若能,求出m的值;若不能,请说明理由.
(2)当m=2时,若点P恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线OA的函数表达式.
【分析】(1)①求出点A的坐标,直线直线OA的解析式即可解决问题.
②求出直线OB的解析式,求出点N的坐标,利用矩形的性质求出点P的坐标,再利用待定系数法求出m的值即可.
(2)分两种情形:①当点A在y轴的右侧时,设A(a,a2),求出点P的坐标利用待定系数法构建方程求出a即可.
②当点A在y轴的左侧时,即为①中点B的位置,利用①中结论即可解决问题.
【解析】(1)①∵点A在yx2的图象上,横坐标为8,
∴A(8,16),
∴直线OA的解析式为y=2x,
∵点M的纵坐标为m,
∴M(m,m).
②假设能在抛物线上,
∵∠AOB=90°,
∴直线OB的解析式为yx,
∵点N在直线OB上,纵坐标为m,
∴N(﹣2m,m),
∴MN的中点的坐标为(m,m),
∴P(m,2m),把点P坐标代入抛物线的解析式得到m.
(2)①当点A在y轴的右侧时,设A(a,a2),
∴直线OA的解析式为yax,
∴M(,2),
∵OB⊥OA,
∴直线OB的解析式为yx,可得N(,2),
∴P(,4),代入抛物线的解析式得到,4,
解得a=4±4,
∴直线OA的解析式为y=(±1)x.
②当点A在y轴的左侧时,即为①中点B的位置,
∴直线OA 的解析式为yx=﹣(±1)x,
综上所述,满足条件的直线OA的解析式为y=(±1)x或y=﹣(±1)x.
41.(2020•金华)如图,在平面直角坐标系中,已知二次函数y(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
【分析】(1)利用待定系数法求解即可.
(2)求出y=2时,x的值即可判断.
(3)由题意点B的坐标为(0,m2+4),求出几个特殊位置m的值即可判断.
【解析】(1)当m=5时,y(x﹣5)2+4,
当x=1时,n42+4=﹣4.
(2)当n=2时,将C(1,2)代入函数表达式y(x﹣m)2+4,得2(1﹣m)2+4,
解得m=3或﹣1(舍弃),
∴此时抛物线的对称轴x=3,
根据抛物线的对称性可知,当y=2时,x=1或5,
∴x的取值范围为1≤x≤5.
(3)∵点A与点C不重合,
∴m≠1,
∵抛物线的顶点A的坐标是(m,4),
∴抛物线的顶点在直线y=4上,
当x=0时,ym2+4,
∴点B的坐标为(0,m2+4),
抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,
当点B与O重合时,m2+4=0,
解得m=2或﹣2,
当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,
∴点B(0,4),
∴m2+4=4,解得m=0,
当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,
∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.
42.(2020•遵义)如图,抛物线y=ax2x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
【分析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2x+c求出a与c的值即可得出抛物线的解析式;
(2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH,tan60°,求出Q(,),把x代入yx2x+3,得y,则假设不成立;
②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT,tan60°,求出Q(,),把x代入yx2x+3,得y,则假设不成立;
(3)求出B(4,0),待定系数法得出BC直线的解析式yx+3,当M在线段BC上,⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,x2x+3),M(x,x+3),则PDx2x+3,MDx+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,x2x+3),M(x,x+3),则PDx2x+3,MDx+3,代入即可得出结果;当M在BC延长线,⊙M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,⊙M与y轴相切时,延长PD交x轴于D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,x2x+3),M(x,x+3),则PDx2x﹣3,MDx﹣3,代入即可得出结果.
【解析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2x+c得:,
解得:,
∴抛物线的解析式为:yx2x+3;
(2)不存在,理由如下:
①当点Q在y轴右边时,如图1所示:
假设△QCO为等边三角形,
过点Q作QH⊥OC于H,
∵点C (0,3),
∴OC=3,
则OHOC,tan60°,
∴QH=OH•tan60°,
∴Q(,),
把x代入yx2x+3,
得:y,
∴假设不成立,
∴当点Q在y轴右边时,不存在△QCO为等边三角形;
②当点Q在y轴的左边时,如图2所示:
假设△QCO为等边三角形,
过点Q作QT⊥OC于T,
∵点C (0,3),
∴OC=3,
则OTOC,tan60°,
∴QT=OT•tan60°,
∴Q(,),
把x代入yx2x+3,
得:y,
∴假设不成立,
∴当点Q在y轴左边时,不存在△QCO为等边三角形;
综上所述,在抛物线上不存在一点Q,使得△QCO是等边三角形;
(3)令x2x+3=0,
解得:x1=﹣1,x2=4,
∴B(4,0),
设BC直线的解析式为:y=kx+b,
把B、C的坐标代入则,
解得:,
∴BC直线的解析式为:yx+3,
当M在线段BC上,⊙M与x轴相切时,如图3所示:
延长PM交AB于点D,
则点D为⊙M与x轴的切点,即PM=MD,
设P(x,x2x+3),M(x,x+3),
则PDx2x+3,MDx+3,
∴(x2x+3)﹣(x+3)x+3,
解得:x1=1,x2=4(不合题意舍去),
∴⊙M的半径为:MD3;
当M在线段BC上,⊙M与y轴相切时,如图4所示:
延长PM交AB于点D,过点M作ME⊥y轴于E,
则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
设P(x,x2x+3),M(x,x+3),
则PDx2x+3,MDx+3,
∴(x2x+3)﹣(x+3)=x,
解得:x1,x2=0(不合题意舍去),
∴⊙M的半径为:EM;
当M在BC延长线,⊙M与x轴相切时,如图5所示:
点P与A重合,
∴M的横坐标为﹣1,
∴⊙M的半径为:M的纵坐标的值,
即:(﹣1)+3;
当M在CB延长线,⊙M与y轴相切时,如图6所示:
延长PD交x轴于D,过点M作ME⊥y轴于E,
则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
设P(x,x2x+3),M(x,x+3),
则PDx2x﹣3,MDx﹣3,
∴(x2x﹣3)﹣(x﹣3)=x,
解得:x1,x2=0(不合题意舍去),
∴⊙M的半径为:EM;
综上所述,⊙M的半径为或或或.
43.(2020•新疆)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.
(1)求抛物线的解析式;
(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.
①当△A′MN在△OAB内部时,求m的取值范围;
②是否存在点P,使S△A′MNS△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.
【分析】(1)抛物线y=ax2+bx+c的顶点是A(1,3),可以假设抛物线的解析式为y=a(x﹣1)2+3,求出点B的坐标,利用待定系数法即可解决问题.
(2)①根据△A′MN在△OAB内部,构建不等式即可解决问题.
②求出直线OA,AB的解析式,求出MN,利用面积关系构建方程即可解决问题.
【解析】(1)∵抛物线y=ax2+bx+c的顶点是A(1,3),
∴抛物线的解析式为y=a(x﹣1)2+3,
∴OA绕点O顺时针旋转90°后得到OB,
∴B(3,﹣1),
把B(3,﹣1)代入y=a(x﹣1)2+3可得a=﹣1,
∴抛物线的解析式为y=﹣(x﹣1)2+3,即y=﹣x2+2x+2,
(2)①如图1中,
∵B(3,﹣1),
∴直线OB的解析式为yx,
∵A(1,3),
∴C(1,),
∵P(1,m),AP=PA′,
∴A′(1,2m﹣3),
由题意3>2m﹣3,
∴3>m.
②当点P在x轴上方时,∵直线OA的解析式为y=3x,直线AB的解析式为y=﹣2x+5,
∵P(1,m),
∴M(,m),N(,m),
∴MN,
∵S△A′MNS△OA′B,
∴•(m﹣2m+3)•|2m﹣3|×3,
整理得m2﹣6m+9=|6m﹣8|
解得m=6(舍弃)或6,
当点P在x轴下方时,同法可得•(3﹣m)•(3m)[(2m﹣3)]×3,
整理得:3m2﹣12m﹣1=0,
解得m或(舍弃),
∴满足条件的m的值为6或.
44.(2020•遂宁)阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数y=x2﹣4x+3的旋转函数.
(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.
(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.
【分析】(1)由二次函数的解析式可得出a1,b1,c1的值,结合“旋转函数”的定义可求出a2,b2,c2的值,此问得解;
(2)由函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,可求出m,n的值,将其代入(m+n)2020即可求出结论;
(3)利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,结合对称的性质可求出点A1,B1,C1的坐标,由点A1,B1,C1的坐标,利用交点式可求出过点A1,B1,C1的二次函数解析式,由两函数的解析式可找出a1,b1,c1,a2,b2,c2的值,再由a1+a2=0,b1=b2,c1+c2=0可证出经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.
【解析】(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,
∵a1+a2=0,b1=b2,c1+c2=0,
∴a2=﹣1,b2=﹣4,c2=﹣3,
∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;
(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,
∴,
解得:,
∴(m+n)2020=(﹣2+3)2020=1.
(3)证明:当x=0时,y=2(x﹣1)(x+3))=﹣6,
∴点C的坐标为(0,﹣6).
当y=0时,2(x﹣1)(x+3)=0,
解得:x1=1,x2=﹣3,
∴点A的坐标为(1,0),点B的坐标为(﹣3,0).
∵点A,B,C关于原点的对称点分别是A1,B1,C1,
∴A1(﹣1,0),B1(3,0),C1(0,6).
设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),
将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,
解得:a=﹣2,
过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.
∵y=2(x﹣1)(x+3)=2x2+4x﹣6,
∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,
∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,
∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.
2020年中考数学真题分项汇编专题29几何综合压轴问题 (含解析): 这是一份2020年中考数学真题分项汇编专题29几何综合压轴问题 (含解析),共130页。试卷主要包含了性质探究等内容,欢迎下载使用。
专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编【全国通用】: 这是一份专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编【全国通用】,文件包含专题33几何综合压轴问题解答题-2021年中考数学真题分项汇编解析版全国通用第01期docx、专题33几何综合压轴问题解答题-2021年中考数学真题分项汇编原卷版全国通用第01期docx等2份试卷配套教学资源,其中试卷共150页, 欢迎下载使用。
专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编(解析版)【全国通用】: 这是一份专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编(解析版)【全国通用】,共128页。试卷主要包含了解答题等内容,欢迎下载使用。