终身会员
搜索
    上传资料 赚现金

    2021年中考数学真题复习汇编:专题11一次函数压轴综合问题(第02期)(含解析)

    立即下载
    加入资料篮
    2021年中考数学真题复习汇编:专题11一次函数压轴综合问题(第02期)(含解析)第1页
    2021年中考数学真题复习汇编:专题11一次函数压轴综合问题(第02期)(含解析)第2页
    2021年中考数学真题复习汇编:专题11一次函数压轴综合问题(第02期)(含解析)第3页
    还剩53页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年中考数学真题复习汇编:专题11一次函数压轴综合问题(第02期)(含解析)

    展开

    这是一份2021年中考数学真题复习汇编:专题11一次函数压轴综合问题(第02期)(含解析),共56页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
     专题11一次函数压轴综合问题
    姓名:__________________ 班级:______________ 得分:_________________

    一、单选题
    1.(2021·贵州安顺市·中考真题)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线,其中,则他探究这7条直线的交点个数最多是( )
    A.17个 B.18个 C.19个 D.21个
    【答案】B
    【分析】
    因为题中已知,可知:第1、2条直线相互平行没有交点,第3、4、5条直线交于一点,由此即可求解此题.
    【详解】
    解:∵直线,其中
    ∴第1、2条直线相互平行没有交点,第3、4、5条直线交于一点,
    ∴这5条直线最多有7个交点,
    第6条直线,与前面5条直线的交点数最多有5个,
    第7条直线,与前面6条直线的交点数最多有6个,
    ∴得出交点最多就是7+5+6=18条,
    故选:B.
    【点睛】
    本题考查了两条直线相交或平行问题,做题关键在于分析得出两条平行直线,三条直线相交于一点.
    2.(2021·湖南中考真题)如图,已知的面积为4,点P在边上从左向右运动(不含端点),设的面积为x,的面积为y,则y关于x的函数图象大致是( )

    A. B. C. D.
    【答案】B
    【分析】
    过点作于点,先根据平行四边形的面积公式可得,从而可得的面积为2,再利用的面积减去的面积可得的值,然后根据求出的取值范围,最后根据一次函数的图象与性质即可得.
    【详解】
    解:如图,过点作于点,

    的面积为4,

    的面积为,
    ,即,
    点在边上从左向右运动(不含端点),
    ,即,
    解得,
    则关于的函数图象大致是在内的一条线段,且随的增大而减小,
    故选:B.
    【点睛】
    本题考查了平行四边形的面积公式、一次函数的图象与性质等知识点,熟练掌握平行四边形的面积公式是解题关键.
    3.(2021·山东中考真题)记实数x1,x2,…,xn中的最小数为min|x1,x2,…,xn|=﹣1,则函数y=min|2x﹣1,x,4﹣x|的图象大致为( )
    A. B.
    C. D.
    【答案】B
    【分析】
    分别画出函数的图像,然后根据min|x1,x2,…,xn|=﹣1即可求得.
    【详解】
    如图所示,分别画出函数的图像,

    由图像可得, ,
    故选:B.
    【点睛】
    此题考查了一次函数图像的性质,解题的关键是由题意分析出各函数之间的关系.
    4.(2021·山东威海市·中考真题)如图,在菱形ABCD中,,,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )

    A. B.
    C. D.
    【答案】A
    【分析】
    先证明∠CAB=∠ACB=∠ACD=60°,再分0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,∠B=∠D=60°,
    ∴△ABC,ACD都是等边三角形,
    ∴∠CAB=∠ACB=∠ACD=60°.
    如图1,当0≤x≤1时,AQ=2x,AP=x,
    作PE⊥AB于E,
    ∴,
    ∴,
    故D选项不正确;

    如图2,当1<x≤2时,CP=2-x,CQ=4-2x,BQ=2x-2,
    作PF⊥BC与F,作QH⊥AB于H,
    ∴,

    ∴,
    故B选项不正确;

    当2<x≤3时,CP=x-2,CQ=2x-4,
    ∴PQ=x-2,
    作AG⊥CD于G,
    ∴,
    ∴,
    故C不正确.

    故选:A
    【点睛】
    本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.
    5.(2021·湖南中考真题)如图,在边长为4的菱形中,.点从点出发,沿路线运动.设点经过的路程为,以点,,为顶点的三角形的面积为,则下列图象能反映与的函数关系的是( )

    A. B. C. D.
    【答案】A
    【分析】
    过点B作BE⊥AD于点E,由题意易得,当点P从点A运动到点B时,△ADP的面积逐渐增大,当点P在线段BC上时,△ADP的面积保持不变,当点P在CD上时,△ADP的面积逐渐减小,由此可排除选项.
    【详解】
    解:过点B作BE⊥AD于点E,如图所示:

    ∵边长为4的菱形中,,
    ∴,
    ∴∠ABE=30°,
    ∴,
    ∴,
    当点P从点A运动到点B时,△ADP的面积逐渐增大,点P与点B重合时,△ADP的面积最大,最大为;
    当点P在线段BC上时,△ADP的面积保持不变;
    当点P在CD上时,△ADP的面积逐渐减小,最小值为0;
    ∴综上可得只有A选项符合题意;
    故选A.
    【点睛】
    本题主要考查函数图象及菱形的性质、勾股定理,熟练掌握函数图象及菱形的性质、勾股定理是解题的关键.
    6.(2021·新疆中考真题)如图,在矩形ABCD中,,.点P从点A出发,以2cm/s的速度在矩形的边上沿运动,当点P与点D重合时停止运动.设运动的时间为(单位:s),的面积为S(单位:),则S随t变化的函数图象大致为( )

    A. B. C. D.
    【答案】D
    【分析】
    分点P在AB上运动, 0≤t≤4;点P在BC上运动, 4<t≤7;点P在CD上运动, 7<t≤11,分别计算即可
    【详解】
    当点P在AB上运动时, S==6t,0≤t≤4;
    当点P在BC上运动时, S==24,4<t≤7;
    点P在CD上运动, S=, 7<t≤11,
    故选D.
    【点睛】
    本题考查了矩形中的动点面积函数图像问题,正确进行分类,清楚函数图像的性质是解题的关键.
    7.(2021·湖北武汉市·中考真题)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离(单位:)与慢车行驶时间(单位:)的函数关系如图,则两车先后两次相遇的间隔时间是( )


    A. B. C. D.
    【答案】B
    【分析】
    求出慢车离从甲地到乙地的函数关系为,再求出快车往返解析式,快车从甲地到乙地的解析式,快车从乙地到甲地的解析式,快车从甲地到乙地与慢车相遇时间,快车从乙地到甲地与慢车相遇即可 .
    【详解】
    解:设慢车离甲地的距离(单位:)与慢车行驶时间(单位:)的函数关系为y=kt过(6,),
    代入得,解得,
    ∴慢车解析式为:,
    设快车从甲地到乙地的解析式,
    过(2,0),(4,)两点,代入解析式的,
    解得,
    快车从甲地到乙地的解析式,
    设快车从乙地到甲地的解析式,
    过(4,),(6,0)两点,代入解析式的,
    解得,
    快车从乙地到甲地的解析式,
    快车从甲地到乙地与慢车相遇,
    解得,
    快车从乙地到甲地与慢车相遇,
    解得,
    两车先后两次相遇的间隔时间是-3=h.
    故选择B.
    【点睛】
    本题考查行程问题函数应用题,用待定系数法求一次函数解析式,两函数的交点问题转化为两函数组成方程组,解方程组,掌握待定系数法求一次函数解析式,两函数的交点问题转化为转化为两函数组成方程组,解方程组是解题关键.
    二、填空题
    8.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点在直线上,过点作,交轴于点;过点作轴,交直线于点;过点作,交轴于点;过点作轴,交直线于点;…;按此作法进行下去,则点的坐标为_____________.

    【答案】(,0).
    【分析】
    根据题目所给的解析式,求出对应的坐标,然后根据规律求出的坐标,最后根据题目要求求出最后答案即可.
    【详解】
    解:如图,过点N作NM⊥x轴于M
    将代入直线解析式中得
    ∴,45°
    ∵90°



    ∴的坐标为(2,0)
    同理可以求出的坐标为(4,0)
    同理可以求出的坐标为(8,0)
    同理可以求出的坐标为(,0)
    ∴的坐标为(,0)
    故答案为:(,0).

    【点睛】
    本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.
    9.(2021·山东中考真题)如图,在直角坐标系中,点A是函数y=﹣x图象上的动点,1为半径作⊙A.已知点B(﹣4,0),连接AB,当⊙A与两坐标轴同时相切时,tan∠ABO的值可能为_______.

    A.3 B. C.5 D.
    【答案】BD
    【分析】
    根据“⊙A与两坐标轴同时相切”分为⊙A在第二象限,第四象限两种情况进行解答.
    【详解】
    解:如图,当⊙A在第二象限,与两坐标轴同时相切时,

    在Rt△ABM中,AM=1=OM,BM=BO﹣OM=4﹣1=3,
    ∴tan∠ABO;
    当⊙A在第四象限,与两坐标轴同时相切时,
    在Rt△ABM中,AM=1=OM,BM=BO+OM=4+1=5,
    ∴tan∠ABO;
    故答案为:B或D.
    【点睛】
    本题考查切线的性质和判定,解直角三角形,根据不同情况画出相应的图形,利用直角三角形的边角关系求出答案是解决问题的前提.
    10.(内蒙古呼伦贝尔2021年中考数学试卷)如图,点在直线上,点的横坐标为2,过点作轴,垂足为,以为边向右作正方形,延长交直线l于点;以为边向右作正方形,延长交直线l于点;……;按照这个规律进行下去,点的坐标为___________.

    【答案】
    【分析】
    由题意分别求出A1、A2、A3、A4……An、B1、B2、B3、B4……Bn、的坐标,根据规律进而可求解.
    【详解】
    解:∵点在直线上,点的横坐标为2,过点作轴,垂足为,
    ∴,,∴A1B1=1,
    根据题意,OA2=2+1=3,
    ∴,,
    同理,,,

    ……
    由此规律,可得:,,
    ∴即,
    故答案为:.
    【点睛】
    本题考查一次函数的应用、正方形的性质、点的坐标规律,理解题意,结合图象和正方形的性质,探索点的坐标规律是解答的关键.
    11.(2021·广西贺州市·中考真题)如图,一次函数与坐标轴分别交于,两点,点,分别是线段,上的点,且,,则点的标为________.

    【答案】
    【分析】
    过P作PD⊥OC于D,先求出A,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB≌△OPA,从而求出BD=2,OD=4−2,进而即可求解.
    【详解】
    如图所示,过P作PD⊥OC于D,
    ∵一次函数与坐标轴分别交于A,两点,
    ∴A(-4,0),B(0,4),即:OA=OB,
    ∴∠ABO=∠OAB=45°,
    ∴△BDP是等腰直角三角形,

    ∵∠PBC=∠CPO=∠OAP=45°,
    ∴∠PCB+∠BPC=135°=∠OPA+∠BPC,
    ∴∠PCB=∠OPA,
    又∵PC=OP,
    ∴△PCB≌△OPA(AAS),
    ∴AO=BP=4,
    ∴Rt△BDP中,BD=PD=BP÷=2,
    ∴OD=OB−BD=4−2,
    ∴P(-2,4−2).
    故答案是:P(-2,4−2).
    【点睛】
    本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.
    12.(2021·湖南永州市·中考真题)如图,A,B两点的坐标分别为,在x轴上找一点P,使线段的值最小,则点P的坐标是_______________.

    【答案】
    【分析】
    连接点A,B交轴于点P,则 PA+PB的值最小,此时点P即为所求.
    【详解】
    解:连接点A,B,
    设直线AB的解析式为
    点,点

    解得
    直线AB的解析式为
    当时,则
    解得

    故答案为:
    【点睛】
    本题考查了两线段之和的最值问题,待定系数法求一次函数解析式,一次函数与坐标轴的交点等知识,熟练掌握解题方法是解题关键.

    三、解答题
    13.(2021·江苏南通市·中考真题)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:
    A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;
    B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.
    例如,一次购物的商品原价为500元,
    去A超市的购物金额为:(元);
    去B超市的购物金额为:(元).
    (1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;
    (2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.
    【答案】(1)A商场y关于x的函数解析式:;B商场y关于x的函数解析式:;
    (2)当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.
    【分析】
    (1)利用促销方式,分别写出A、B两商场促销活动的情况,注意需要写出分段函数;
    (2)小刚一次购物的商品原价超过200元,则可以确定B的函数解析式,再分段求出A函数的解析式,比较两函数值即可,注意分段讨论.
    【详解】
    解:(1)A商场y关于x的函数解析式:,即:;
    B商场y关于x的函数解析式:,即:;
    (2)∵小刚一次购物的商品原价超过200元
    ∴当时,,
    令,,
    所以,当时,即,去B超市更省钱;
    当时,,
    令,,
    所以,当时,即,此时去A、B超市一样省钱;
    当时,即,去B超市更省钱;
    当时,即,去A超市更省钱;
    综上所述,当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.
    【点睛】
    本题考查了一次函数的应用,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意B商场根据商品原价的取值范围分情况讨论.
    14.(2021·贵州毕节市·中考真题)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元,经协商,甲旅行社的优惠条件是:老师、学生都按八折收费:乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费,
    (1)设参加这次红色旅游的老师学生共有名,,(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求,关于的函数解析式;
    (2)该校选择哪家旅行社支付的旅游费用较少?
    【答案】(1) , (2)当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等.
    【分析】
    (1)根据旅行社的收费=老师的费用+学生的费用,再由总价=单价×数量就可以得出 、与x的函数关系式;
    (2)根据(1)的解析式,若,,,分别求出相应x的取值范围,即可判断哪家旅行社支付的旅游费用较少.
    【详解】
    (1)由题意,得
    ,
    ,
    答: 、 与x的函数关系式分别是: ,
    (2)当时,,解得 ,
    当时,,解得,
    当时,,解得,
    答:当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等.
    【点睛】
    本题考查了单价×数量=总价的运用,一次函数的解析式的运用,列一元一次不等式组解实际问题的运用,解题的关键是根据题意求出一次函数的解析式,然后比较函数值的大小求出相应x的取值范围.
    15.(2021·湖南湘西土家族苗族自治州·中考真题)年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向、两个不同需求学生群体的微课视频.已知制作个类微课和个类微课需要4600元成本,制作个类微课和个类微课需要元成本.李老师又把做好的微课出售给某视频播放网站,每个类微课售价元,每个类微课售价元.该团队每天可以制作个类微课或者个类微课,且团队每月制作的类微课数不少于类微课数的倍(注:每月制作的、两类微课的个数均为整数).假设团队每月有天制作微课,其中制作类微课天,制作、两类微课的月利润为元.
    (1)求团队制作一个类微课和一个类微课的成本分别是多少元?
    (2)求与之间的函数关系式,并写出的取值范围;
    (3)每月制作类微课多少个时,该团队月利润最大,最大利润是多少元?
    【答案】(1)团队制作一个类微课和一个类微课的成本分别是700元、500元;(2),;(3)每月制作类微课个时,该团队月利润最大,最大利润是元.
    【分析】
    (1)设团队制作一个类微课的成本为元,制作一个类微课的成本为元,由题意得,然后求解即可;
    (2)由(1)及题意可直接进行求解;
    (3)由(2)及结合一次函数的性质可直接进行求解.
    【详解】
    解:(1)设团队制作一个类微课的成本为元,制作一个类微课的成本为元,由题意得:

    解得:;
    答:团队制作一个类微课和一个类微课的成本分别是700元、500元.
    (2)由题意得制作类微课天,则有:

    ∵团队每月制作的类微课数不少于类微课数的倍,
    ∴,且,解得:,
    (3)由(2)可得:,,
    ∴随的增大而增大,
    ∵每月制作的、两类微课的个数均为整数,
    ∴为偶数,
    ∴当时,w取最大,最大值为;
    答:每月制作类微课个时,该团队月利润最大,最大利润是元.
    【点睛】
    本题主要考查一次函数、一元一次不等式及二元一次方程组的应用,熟练掌握一次函数、一元一次不等式及二元一次方程组的应用是解题的关键.
    16.(2021·吉林中考真题)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数(万人)与各自接种时间(天)之间的关系如图所示.

    (1)直接写出乙地每天接种的人数及的值;
    (2)当甲地接种速度放缓后,求关于的函数解析式,并写出自变量的取值范围;
    (3)当乙地完成接种任务时,求甲地未接种疫苗的人数.
    【答案】(1);(2);(3)5万人
    【分析】
    (1)由接种速度=接种人数÷接种天数求解.
    (2)利用待定系数法求解.
    (3)将代入(2)问中解析式得出,然后由.
    【详解】
    解:(1)乙地接种速度为(万人/天),

    解得.
    (2)设,将,代入解析式得:

    解得,
    ∴.
    (3)把代入得,
    (万人).
    【点睛】
    本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
    17.(2021·贵州黔东南苗族侗族自治州·中考真题)黔东南州某销售公司准备购进A、B两种商品,已知购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元.
    (1)求A、B两种商品的进货单价分别是多少元?
    (2)若该公司购进A商品200件,B商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件A商品运往甲、乙两地的运费分别为20元和25元;每件B商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.
    ①设运往甲地的A商品为(件),投资总运费为(元),请写出与的函数关系式;
    ②怎样调运A、B两种商品可使投资总费用最少?最少费用是多少元?(投资总费用=购进商品的费用+运费)
    【答案】(1)A商品的进货单价为200元,B商品的进货单价为250元;(2)①;②最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地.最小费用为125040元
    【分析】
    (1)设A商品的进货单价为x元,B商品的进货单价为y元,根据购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元列出方程组求解即可;
    (2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,根据投资总运费=运往甲、乙两地运费之和列出函数关系式即可;②根据投资总费用=购买商品的费用+总运费,列出函数关系式,由自变量的取值范围是:0≤x≤200,根据函数的性质判断最佳运输方案并求出最低费用.
    【详解】
    解:(1)设A商品的进货单价为x元,B商品的进货单价为y元,
    根据题意,得,
    解得:,
    答:A商品的进货单价为200元,B商品的进货单价为250元;
    (2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,
    运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,
    则y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,
    ∴y与x的函数关系式为y=4x+10040;
    ②投资总费用w=200×200+300×250+4x+10040=4x+125040,
    自变量的取值范围是:0≤x≤200,
    ∵k=4>0,
    ∴y随x增大而增大.
    当x=0时,w取得最小值,w最小=125040(元),
    ∴最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地,最小费用为125040元.
    答:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地总费用最小,最小费用为125040元.
    【点睛】
    本题考查了一次函数的应用和二元一次方程组的应用,关键是根据投资总费用=购进商品的费用+运费列出函数关系式.
    18.(2021·贵州安顺市·中考真题)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如下表:
    产品
    展板
    宣传册
    横幅
    制作一件产品所需时间(小时)
    1


    制作一件产品所获利润(元)
    20
    3
    10
    (1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
    (2)若广告公司所获利润为700元,且三种产品均有制作.求制作三种产品总量的最小值.
    【答案】(1)制作展板、宣传册和横幅的数量分别是:10,50,10;(2)制作三种产品总量的最小值为75.
    【分析】
    (1)设展板数量为x,则宣传册数量为5x,横幅数量为y,根据等量关系,列出二元一次方程组,即可求解;
    (2)设展板数量为x,则宣传册数量为5x,横幅数量为y,可得,结合x,y取正整数,可得制作三种产品总量的最小值.
    【详解】
    (1)解:设展板数量为x,则宣传册数量为5x,横幅数量为y,
    根据题意得:,解得:,
    5×10=50,
    答:制作展板、宣传册和横幅的数量分别是:10,50,10;
    (2)设展板数量为x,则宣传册数量为5x,横幅数量为y,制作三种产品总量为w,
    由题意得:,即:,
    ∴,
    ∴w=,
    ∵x,y取正整数,
    ∴x可取的最小整数为2,
    ∴w=的最小值=55,即:制作三种产品总量的最小值为75.
    【点睛】
    本题主要考查二元一次方程组以及一次函数的实际应用,根据数量关系,列出方程组以及一次函数的解析式,是解题的关键.
    19.(辽宁省营口市2021年中考真题试卷)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)

    (1)直接写出y与x的函数关系式;
    (2)当售价为多少时,商家所获利润最大,最大利润是多少?
    【答案】(1);(2)当售价为70元时,商家所获利润最大,最大利润是4500元
    【分析】
    (1)利用待定系数法分段求解函数解析式即可;
    (2)分别求出当时与当时的销售利润解析式,利用二次函数的性质即可求解.
    【详解】
    解:(1)当时,设,
    将和代入,可得
    ,解得,即;
    当时,设,
    将和代入,可得
    ,解得,即;
    ∴;
    (2)当时,
    销售利润,
    当时,销售利润有最大值,为4000元;
    当时,
    销售利润,
    该二次函数开口向上,对称轴为,当时位于对称轴右侧,
    当时,销售利润有最大值,为4500元;
    ∵,
    ∴当售价为70元时,商家所获利润最大,最大利润是4500元.
    【点睛】
    本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键.
    20.(2021·内蒙古呼和浩特市·中考真题)下面图片是七年级教科书中“实际问题与一元一次方程”的探究3
    电话计费问题

    月使用费/元
    主叫限定时间/min
    主叫超时费/(元/min)
    被叫
    方式一
    58
    150
    0.25
    免费
    方式二
    88
    350
    0.19
    免费

    考虑下列问题:
    ①设一个月内用移动电话主叫为min(t是正整数)根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费
    ②观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
    小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.
    (1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:
    x表示问题中的__________,y表示问题中的__________.并写出计费方式一和二分别对应的函数解析式;
    (2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象直接写出如何根据主叫时间选择省钱的计费方式.(注:坐标轴单位长度可根据需要自己确定)

    【答案】(1)主叫时间,计费;方式一:;方式二:;(2)见解析,当主叫时间在270分钟以内选方式一,270分钟时两种方式相同,超过270分钟选方式二
    【分析】
    (1)根据题意即可知道x、y的实际意义,根据两种方式的计算方式即可列出分段式函数关系式;
    (2)根据函数表达式,描点法画出函数图像即可.
    【详解】
    解:(1)根据题意可知:x表示主叫时间,y表示计费,
    通过表格数据可知两种方式都属于分段函数,主叫超时费即为一次函数“k”值,即可直接写出函数表达式为:
    方式一:
    方式二:
    (2)大致图象如下:


    解得x=270,
    由图可知:当主叫时间在270分钟以内选方式一,270分钟时两种方式相同,超过270分钟选方式二.
    【点睛】
    本题考查了一次函数的表达式求法和函数图像的画法,结合函数图像确定方案选择问题,理解数据与函数的关系是解决问题的关键.
    21.(2021·湖南中考真题)已知函数的图象如图所示,点在第一象限内的函数图象上.


    (1)若点也在上述函数图象上,满足.
    ①当时,求的值;
    ②若,设,求w的最小值;
    (2)过A点作y轴的垂线,垂足为P,点P关于x轴的对称点为,过A点作x轴的线,垂足为Q,Q关于直线的对称点为,直线是否与y轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.
    【答案】(1)①;②;(2)直线与轴交于定点,定点的坐标为.
    【分析】
    (1)①先确定,再根据代入求解即可得;
    ②先确定,从而可得,再代入可得一个关于的二次函数,利用二次函数的性质即可得;
    (2)先分别求出点的坐标,再利用待定系数法求出直线的解析式,从而可得点的坐标,然后利用待定系数法求出直线的解析式,由此即可得出结论.
    【详解】
    解:(1)①对于二次函数,
    在内,随的增大而增大,


    则当时,,解得或(舍去),
    当时,,解得;
    ②,


    则,
    化成顶点式为,
    由二次函数的性质可知,在内,当时,取最小值,最小值为;
    (2)由题意,设与交于点,画图如下,

    在已知函数的第一象限内的图象上,
    ,即,
    轴,轴,点关于轴的对称点为,

    设直线的解析式为,
    将点代入得:,解得,
    则直线的解析式为,
    关于直线的对称点为,

    设直线的解析式为,
    将点代入得:,解得,
    则直线的解析式为,
    联立,解得,即,
    设点的坐标为,
    则,解得,即,
    设直线的解析式为,
    将点代入得:,
    解得,
    则直线的解析式为,
    当时,,
    即直线与轴交于定点.
    【点睛】
    本题考查了二次函数与一次函数的综合、轴对称等知识点,熟练掌握待定系数法是解题关键.
    22.(2021·湖北襄阳市·中考真题)为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:

    进价(元/斤)
    售价(元/斤)
    鲢鱼

    5
    草鱼

    销量不超过200斤的部分
    销量超过200斤的部分
    8
    7
    已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.
    (1)求,的值;
    (2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼斤(销售过程中损耗不计).
    ①分别求出每天销售鲢鱼获利(元),销售草鱼获利(元)与的函数关系式,并写出的取值范围;
    ②端午节这天,老李让利销售,将鲢鱼售价每斤降低元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利(元)的最小值不少于320元,求的最大值.
    【答案】(1);(2)①;;②0.25
    【分析】
    (1)根据题意列出关于a,b的二元一次方程组,进而即可求解;
    (2)①根据利润=(售价-进价)×销售量,列出函数解析式,即可;②根据题意列出W关于x的一次函数关系式,参数为m,结合一次函数的性质,得到关于m的不等式,进而即可求解.
    【详解】
    解:(1)根据题意得:,解得,
    (2)①.
    当时,即:,;
    当时,即:,.
    ∴,
    ②由题意得,其中.
    ∵当时,.不合题意.
    ∴.
    ∴随的增大而增大.
    ∴当时,的值最小,
    由题意得.
    解得:.
    ∴的最大值为0.25.
    【点睛】
    本题主要考查二元一次方程组以及一次函数的实际应用,根据数量关系;列出方程组以及一次函数解析式,是解题的关键.
    23.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
    (1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
    (3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?
    【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件
    【分析】
    (1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,根据题意可直接列出二元一次方程组求解即可;
    (2)在(1)的基础之上,结合题意,建立关于m的一元一次不等式组,求解即可得到m的范围,从而根据实际意义确定出m的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;
    (3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.
    【详解】
    解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元.
    根据题意,得,
    解得:,
    答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.
    (2)根据题意,得,
    解得:,
    ∵m为整数,
    ∴m可取5、6、7,
    ∴有三种方案:
    方案一:购买甲种农机具5件,乙种农机具5件;
    方案二:购买甲种农机具6件,乙种农机具4件;
    方案三:购买甲种农机具7件,乙种农机具3件.
    设总资金为W万元,则,
    ∵,
    ∴W随m的增大而增大,
    ∴当时,(万元),
    ∴方案一需要资金最少,最少资金是10万元.
    (3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,
    根据题意,此时,节省的费用为(万元),
    降价后的单价分别为:甲种0.8万元,乙种0.3万元,
    设节省的资金可购买a台甲种,b台乙种,
    则:,
    由题意,a,b均为非负整数,
    ∴满足条件的解为:或,
    ∴节省的资金再次购买农机具的方案有两种:
    方案一:购买甲种农机具0件,乙种农机具15件;
    方案二:购买甲种农机具3件,乙种农机具7件.
    【点睛】
    本题考查二元一次方程组、一元一次不等式组以及一次函数的实际应用,找准等量关系,理解一次函数的性质是解题关键.
    24.(2021·黑龙江大庆市·中考真题)如图①是甲,乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度与注水时间之间的关系如图②所示,根据图象解答下列问题:

    (1)图②中折线表示_____________槽中水的深度与注入时间之间的关系;线段表示_____________槽中水的深度与注入时间之间的关系;铁块的高度为_____________.
    (2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)
    【答案】(1)乙,甲,16;(2)2分钟
    【分析】
    (1)根据图象分析可知水深减少的图象为甲槽的,水深增加的为乙槽的,并水深16cm之后增加的变慢,即可得到铁块的高度;
    (2)利用待定系数法求出两个水槽中水深与时间的解析式,即可求解.
    【详解】
    解:(1)图②中折线表示乙槽中水的深度与注入时间之间的关系;
    线段表示甲槽中水的深度与放出时间之间的关系;
    铁块的高度为16.
    (2)设甲槽中水的深度为,把,代入,可得
    ,解得,
    ∴甲槽中水的深度为,
    根据图象可知乙槽和甲槽水深相同时,在DE段,
    设乙槽DE段水的深度为,把,代入,可得
    ,解得,
    ∴甲槽中水的深度为,
    ∴甲、乙两个水槽中水的深度相同时,,解得,
    故注入2分钟时,甲、乙两个水槽中水的深度相同.
    【点睛】
    本题考查一次函数的实际应用,根据题意理解每段函数对应的实际情况是解题的关键.
    25.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:
    (实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:
    供水时间x(小时)
    0
    2
    4
    6
    8
    箭尺读数y(厘米)
    6
    18
    30
    42
    54
    (探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.
    (2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.
    (结论应用)应用上述发现的规律估算:
    (3)供水时间达到12小时时,箭尺的读数为多少厘米?
    (4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)

    【答案】(1)见解析;(2)在同一直线上,解析式为;(3);(4)当天晚上的22:00.
    【分析】
    (1)将各点在坐标系中直接描出即可;
    (2)观察发现,供水时间每增加2小时,箭尺读数增加12cm,由此可判断它们在同以直线上,设直线解析式为,再代入两个点坐标即可求解;
    (3)当时代入(2)中解析式即可求出箭尺的读数;
    (4)当时代入(2)中解析式即可求出供水时间,再结合实验开始时间为8:00即可求解.
    【详解】
    解:(1)将表格中各点在直角坐标系中描出来如下图所示:

    (2)分析表格中数据发现,供水时间每增加2小时,箭尺读数增加12cm,观察(1)中直角坐标系点的特点,发现它们位于同一直线上,
    设直线解析式为,代入点(0,6)和点(2,18),
    得到,解得,
    ∴直线的表达式为:;
    (3)当供水时间达到12小时时,即时,代入中,
    解得cm,
    ∴此时箭尺的读数为;
    (4)当箭尺读数为90厘米时,即时,代入中,
    解得(小时),
    ∴经过14小时后箭尺读数为90厘米,
    ∵实验记录的开始时间是上午8:00,
    ∴箭尺读数为90厘米时对应的时间为8+14=22,即对应当天晚上的22:00.
    【点睛】
    本题考查待定系数法求一次函数的解析式、一次函数的实际应用问题,读懂题目,掌握一次函数的图形及性质是解决本题的关键.
    26.(2021·江苏盐城市·中考真题)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:
    该地区每周接种疫苗人数统计表
    周次
    第1周
    第2周
    第3周
    第4周
    第5周
    第6周
    第7周
    第8周
    接种人数(万人)
    7
    10
    12
    18
    25
    29
    37
    42
    该地区全民接种疫苗情况扇形统计图

    A:建议接种疫苗已接种人群
    B:建议接种疫苗尚未接种人群
    C:暂不建议接种疫苗人群

    根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点、作一条直线(如图所示,该直线的函数表达式为),那么这条直线可近似反映该地区接种人数的变化趋势.

    请根据以上信息,解答下列问题:
    (1)这八周中每周接种人数的平均数为________万人:该地区的总人口约为________万人;
    (2)若从第9周开始,每周的接种人数仍符合上述变化趋势.
    ①估计第9周的接种人数约为________万人;
    ②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?
    (3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果,那么该地区的建议接种人群最早将于第几周全部完成接种?
    【答案】(1)22.5,800;(2)①48;②最早到13周实现全面免疫;(3)25周时全部完成接种
    【分析】
    (1)根据前8周总数除以8即可得平均数,8周总数除以所占百分比即可;
    (2)①将代入即可;②设最早到第周,根据题意列不等式求解;
    (3)设第周接种人数不低于20万人,列不等式求解即可
    【详解】
    (1)22.5,
    故答案为:
    (2)①把代入

    故答案为:48
    ②∵疫苗接种率至少达到60%
    ∴接种总人数至少为万
    设最早到第周,达到实现全民免疫的标准
    则由题意得接种总人数为

    化简得
    当时,
    ∴最早到13周实现全面免疫
    (3)由题意得,第9周接种人数为万
    以此类推,设第周接种人数不低于20万人,即
    ∴,即
    ∴当周时,不低于20万人;当周时,低于20万人;
    从第9周开始当周接种人数为,
    ∴当时
    总接种人数为:解之得
    ∴当为25周时全部完成接种.
    【点睛】
    本题考查的是扇形统计图的综合运用,平均数的概念,一次函数的性质,列不等式解决实际问题,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    27.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:,下表是某4个月的销售记录.每月销售量(万件)与该月销售价x(元/件)之间成一次函数关系.
    月份

    二月
    三月
    四月
    五月

    销售价x(元件)

    6
    7
    7.6
    8.5

    该月销售量y(万件)

    30
    20
    14
    5

    (1)求y与x的函数关系式;
    (2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?
    (3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)
    【答案】(1);(2)4万元;(3)当销售价定为7元/件时,该月纯收入最大.
    【分析】
    (1)利用待定系数法即可得;
    (2)将代入求出的值,代入与的函数关系式求出该月的销售量,再利用乘以该月的销售量即可得;
    (3)设该月纯收入为万元,先根据纯收入的计算公式求出与之间的函数关系式,再利用二次函数的性质求解即可得.
    【详解】
    解:(1)设与的函数关系式为,
    将点代入得:,解得,
    则与的函数关系式为;
    (2)当时,,

    则(万元),
    答:政府该月应付给厂家补贴4万元;
    (3)设该月纯收入为万元,
    由题意得:,
    整理得:,
    由二次函数的性质可知,在内,当时,取得最大值,最大值为32,
    答:当销售价定为7元/件时,该月纯收入最大.
    【点睛】
    本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键.
    28.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用(万元)与月销售量(辆)()满足某种函数关系的五组对应数据如下表:

    4
    5
    6
    7
    8

    0
    0.5
    1
    1.5
    2
    (1)请你根据所给材料和初中所学的函数知识写出与的关系式________;
    (2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价--进价)x,请你根据上述条件,求出月销售量为多少时,销售利润最大?最大利润是多少?
    【答案】(1);(2)月销售量为8辆时,销售利润最大,最大利润是32万元
    【分析】
    (1)观察表格中数据可知,与的关系式为一次函数的关系,设解析式为,再代入数据求解即可;
    (2)根据已知条件“每月销售利润y=(每辆原售价--进价)x”,求出y的表达式,然后再借助二次函数求出其最大利润即可.
    【详解】
    解:(1)由表中数据可知,与的关系式为一次函数的关系,设解析式为,
    代入点(4,0)和点(5,0.5),
    得到,解得,
    故与的关系式为;
    (2)由题意可知:降价后每月销售利润y=(每辆原售价--进价)x,
    即:,其中,
    ∴是的二次函数,且开口向下,其对称轴为,
    ∴当时,有最大值为万元,
    答:月销售量为8辆时,销售利润最大,最大利润是32万元.
    【点睛】
    本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键.
    29.(2021·黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需万元,购进1件甲种农机具和3件乙种农机具共需3万元.
    (1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于万元又不超过12万元,设购进甲种农机具件,则有哪几种购买方案?
    (3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?
    【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.
    【分析】
    (1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,然后根据题意可得,进而求解即可;
    (2)由(1)及题意可得购进乙种农机具为(10-m)件,则可列不等式组为,然后求解即可;
    (3)设购买农机具所需资金为w万元,则由(2)可得,然后结合一次函数的性质及(2)可直接进行求解.
    【详解】
    解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,由题意得:

    解得:,
    答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.
    (2)由题意得:购进乙种农机具为(10-m)件,
    ∴,
    解得:,
    ∵m为正整数,
    ∴m的值为5、6、7,
    ∴共有三种购买方案:
    购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.
    (3)设购买农机具所需资金为w万元,则由(2)可得,
    ∵1>0,
    ∴w随m的增大而增大,
    ∴当m=5时,w的值最小,最小值为w=5+5=10,
    答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.
    【点睛】
    本题主要考查一次函数、二元一次方程组及一元一次不等式组的应用,熟练掌握一次函数、二元一次方程组及一元一次不等式组的应用是解题的关键.
    30.(2021·内蒙古通辽市·中考真题)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.
    (1)求甲、乙两种消毒液的零售价分别是每桶多少元?
    (2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的,由于购买量大,甲、乙两种消毒液分别获得了20元/桶,15元/桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?
    【答案】(1)甲种消毒液每桶的单价为30元,乙种消毒液每桶的单价为24元;(2)甲种消毒液购买75桶时,所需资金总额最少,最少总金额是4875元.
    【分析】
    (1)根据该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液,可以得到相应的分式方程,从而可以得到甲、乙两种消毒剂的零售价,注意分式方程要检验;
    (2)设购买甲种消毒液m桶,则购买乙种消毒液(300-m)桶,根据甲种消毒液的桶数不少于乙种消毒液桶数的,即可得出关于m的一元一次不等式,再结合费用总量列出一次函数,根据一次函数性质得出结果.
    【详解】
    解:(1)设甲种消毒液每桶的单价为x元,乙种消毒液每桶的单价为(x-6)元,
    依题意,得: ,
    解得:x=30,
    经检验,x=30是原方程的解,且符合实际意义,则x-6=24.
    答:甲种消毒液每桶的单价为30元,乙种消毒液每桶的单价为24元;
    (2)设购买甲种消毒液m桶,则购买乙种消毒液(300-m)桶,根据题意得到不等式:
    m≥(300-m),解得:m≥75,
    ∴75≤m≤300,
    设总费用为W,根据题意得:
    W=20m+15(300-m)=5m+4500,
    ∵k=5>0,
    ∴W随m的减小而减小,
    ∴当m=75时,W有最小值,
    ∴W=5×75+4500=4875元
    ∴甲种消毒液购买75桶时,所需资金总额最少,最少总金额是4875元.
    【点睛】
    本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答,注意分式方程要检验.
    31.(2021·福建中考真题)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.
    (1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?
    (2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?
    【答案】(1)该公司当月零售农产品20箱,批发农产品80箱;(2)该公司应零售农产品300箱、批发农产品700箱才能使总利润最大,最大总利润是49000元
    【分析】
    (1)设该公司当月零售农产品x箱,批发农产品y箱,利用卖出100箱这种农产品共获利润4600元列方程组,然后解方程组即可;
    (2)设该公司零售农产品m箱,获得总利润w元,利用利润的意义得到,再根据该公司零售的数量不能多于总数量的30%可确定m的范围,然后根据一次函数的性质解决问题.
    【详解】
    解:(1)设该公司当月零售农产品x箱,批发农产品y箱.
    依题意,得
    解得
    所以该公司当月零售农产品20箱,批发农产品80箱.
    (2)设该公司零售农产品m箱,获得总利润w元.则批发农产品的数量为箱,
    ∵该公司零售的数量不能多于总数量的30%

    依题意,得.
    因为,所以w随着m的增大而增大,
    所以时,取得最大值49000元,
    此时.
    所以该公司应零售农产品300箱、批发农产品700箱才能使总利润最大,最大总利润是49000元.
    【点睛】
    本题考查了一次函数的应用:建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题;也考查了二元一次方程组.
    32.(2021·河南中考真题)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中,两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:
    类别
    价格
    款玩偶
    款玩偶
    进货价(元/个)


    销售价(元/个)


    (1)第一次小李用元购进了,两款玩偶共个,求两款玩偶各购进多少个;
    (2)第二次小李进货时,网店规定款玩偶进货数量不得超过款玩偶进货数量的一半.小李计划购进两款玩偶共个,应如何设计进货方案才能获得最大利润,最大利润是多少?
    (3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?
    (注:利润率)
    【答案】(1)款20个,款10个;(2)款10个,款20个,最大利润是460元;(3)第二次更合算.理由见解析
    【分析】
    (1)根据题意列二元一次方程组,解方程组即可;
    (2)根据条件求得利润的解析式,再判断最大利润即可;
    (3)分别求出第一次和第二次的利润率,比较之后即可知道哪一次更合算.
    【详解】
    (1)设,两款玩偶分别为个,根据题意得:

    解得:
    答:两款玩偶,款购进20个,款购进10个.
    (2)设购进款玩偶a个,则购进款个,设利润为y元


    (元)
    款玩偶进货数量不得超过款玩偶进货数量的一半

    ,又
    且为整数,

    当时,y有最大值
    (元)
    款个,款个,最大利润是元.
    (3)第一次利润(元)
    第一次利润率为:
    第二次利润率为:

    第二次的利润率大,即第二次更划算.
    【点睛】
    本题考查了二元一次方程组的应用,最大利润方案问题,利润率求解等问题,一次函数最值问题,理解题意,根据题意列出方程组是解题的关键.
    33.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,.
    (1)求与之间的函数关系式(不求自变量的取值范围);
    (2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)
    【答案】(1);(2)种植面积为240亩时总利润最大,最大利润268800元.
    【分析】
    (1)利用待定系数法求出一次函数解析式即可;
    (2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系为,进而得出W与x的函数关系式,再利用二次函数的最值公式求出即可.
    【详解】
    解:(1)设与之间的函数关系式,依题意得:

    解得:,
    ∴与之间的函数关系式为.
    (2)设老张明年种植该作物的总利润为元,依题意得:



    ∵,
    ∴当时,随的增大而增大.
    由题意知:,
    ∴当时,最大,最大值为268800元.
    即种植面积为240亩时总利润最大,最大利润268800元.
    【点睛】
    此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W与x的函数关系式是求最值问题的关键.
    34.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.
    (1)A,B两种花卉每盆各多少元?
    (2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
    【答案】(1)A 种花弃每盆1元,B种花卉每盆1.5元;(2)购买A 种花卉1500盆时购买这批花卉总费用最低,最低费用为 8250元
    【分析】
    (1)设A 种花弃每盆x元,B 种花卉每盆(x+0.5)元,根据题意列分式方程,解出方程并检验;
    (2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),w=t+1.5(6000-t)=-0.5t+9000,w随t的增大而减小,所以根据t的范围可以求得w的最小值.
    【详解】
    解:(1)设A 种花弃每盆x元,B 种花卉每盆(x+0.5)元.
    根据题意,得.
    解这个方程,得x=1.
    经检验知,x=1是原分式方程的根,并符合题意.
    此时x+0.5=1+0.5=1.5(元).
    所以,A种花弃每盆1元,B种花卉每盆1.5元.
    (2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),
    解得∶t≤1500.
    由题意,得w=t+1.5(6000-t)=-0.5t+9000.
    因为w是t的一次函数,k=-0.5<0,w随t的增大而减小,所以当t=1500 盆时,w最小.
    w=-0.5×1500+9000=8250(元).
    所以,购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元.
    【点睛】
    本题主要考查了分式方程解决实际问题和一次函数求最值,根据等量关系列出方程和函数关系式及取值范围是解题关键.
    35.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A的坐标为,点B在直线上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.
    (1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.
    ①若,求证:.
    ②若,求四边形的面积.
    (2)是否存在点B,使得以为顶点的三角形与相似?若存在,求OB的长;若不存在,请说明理由.

    【答案】(1)①见解析;②;(2)存在,,4,9,1
    【分析】
    (1)①等腰三角形等角对等边,则,根据等角的余角相等和对顶角相等,得到,根据等角对等边,即可证明;
    ②添加辅助线,过点A作于点H,根据直线l的解析式和角的关系,分别求出线段AB、BC、OB、OC的长,则;
    (2)分多钟情况进行讨论:①当点C在第二象限内,时;②当点C在第二象限内,时;③当点C在第四象限内,时.
    【详解】
    解:(1)①证明:如图1,
    ∵,∴.
    ∴,∴.
    而,
    ∴.
    ∵,∴.
    ∴,
    ∴.

    ②如图1,过点A作于点H.由题意可知,
    在中,.设,.
    ∵,∴,解得.
    ∴.
    ∵,
    ∴,

    ∴.
    ∵,
    ∴,
    ∴,

    ∴.
    (2)过点A作于点H,则有.
    ①如图2,当点C在第二象限内,时,设
    ∵,∴.
    又∵,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,∴,
    ∴,整理得,解得.
    ∴.

    ②如图3,当点C在第二象限内,时,延长交于点G,
    则,∴.
    又∵,
    ∴,
    而,
    ∴,


    ③当点C在第四象限内,时,与相交于点E,则有.
    (a)如图4,点B在第三象限内.

    在中,,∴
    ∴,
    又∵,
    ∴,

    ∴,

    ∴,
    ∴,

    (b)如图5,点B在第一象限内.

    在中
    ∴,∴.
    又∵,

    而,∴

    ∴,
    ∴,

    综上所述,的长为,4,9,1.
    【点睛】
    本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.

    相关试卷

    专题11一次函数与几何压轴问题(优选真题44道)-三年(2021-2023)中考数学真题分项汇编【全国通用】:

    这是一份专题11一次函数与几何压轴问题(优选真题44道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题11一次函数与几何压轴问题优选真题44道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题11一次函数与几何压轴问题优选真题44道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共106页, 欢迎下载使用。

    专题11一次函数与几何压轴问题:三年(2021-2023)中考数学真题:

    这是一份专题11一次函数与几何压轴问题:三年(2021-2023)中考数学真题,共114页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年中考数学真题分项汇编专题29几何综合压轴问题 (含解析):

    这是一份2020年中考数学真题分项汇编专题29几何综合压轴问题 (含解析),共130页。试卷主要包含了性质探究等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map