终身会员
搜索
    上传资料 赚现金

    2021年中考数学真题复习汇编:专题12反比例函数(共32题)(第01期)(含解析)

    立即下载
    加入资料篮
    2021年中考数学真题复习汇编:专题12反比例函数(共32题)(第01期)(含解析)第1页
    2021年中考数学真题复习汇编:专题12反比例函数(共32题)(第01期)(含解析)第2页
    2021年中考数学真题复习汇编:专题12反比例函数(共32题)(第01期)(含解析)第3页
    还剩43页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年中考数学真题复习汇编:专题12反比例函数(共32题)(第01期)(含解析)

    展开

    这是一份2021年中考数学真题复习汇编:专题12反比例函数(共32题)(第01期)(含解析),共46页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
    专题12反比例函数(共32题)
    姓名:__________________ 班级:______________ 得分:_________________
    一、单选题
    1.(2021·四川广安市·中考真题)若点,,都在反比例函数的图象上,则,,的大小关系是( )
    A. B. C. D.
    【答案】A
    【分析】
    先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.
    【详解】
    解:∵反比例函数中k<0,
    ∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.
    ∵-3<0,-1<0,
    ∴点A(-3,y1),B(-1,y2)位于第二象限,
    ∴y1>0,y2>0,
    ∵-3<-1<0,
    ∴0<y1<y2.
    ∵2>0,
    ∴点C(2,y3)位于第四象限,
    ∴y3<0,
    ∴y3<y1<y2.
    故选:A.
    【点睛】
    此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.
    2.(2021·天津中考真题)若点都在反比例函数的图象上,则的大小关系是( )
    A. B. C. D.
    【答案】B
    【分析】
    将A、B、C三点坐标代入反比例函数解析式,即求出的值,即可比较得出答案.
    【详解】
    分别将A、B、C三点坐标代入反比例函数解析式得:
    、、.
    则.
    故选B.
    【点睛】
    本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.
    3.(2021·浙江金华市·中考真题)已知点在反比例函数的图象上.若,则( )
    A. B. C. D.
    【答案】B
    【分析】
    根据反比例函数的图象与性质解题.
    【详解】
    解:反比例函数图象分布在第二、四象限,
    当时,
    当时,


    故选:B.
    【点睛】
    本题考查反比例函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
    4.(2021·江苏连云港市·中考真题)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.
    甲:函数图像经过点;
    乙:函数图像经过第四象限;
    丙:当时,y随x的增大而增大.
    则这个函数表达式可能是( )
    A. B. C. D.
    【答案】D
    【分析】
    根据所给函数的性质逐一判断即可.
    【详解】
    解:A.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而减小.故选项A不符合题意;
    B.对于,当x=-1时,y=-1,故函数图像不经过点;函数图象分布在一、三象限;当时,y随x的增大而减小.故选项B不符合题意;
    C.对于,当x=-1时,y=1,故函数图像经过点;函数图象分布在一、二象限;当时,y随x的增大而增大.故选项C不符合题意;
    D.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而增大.故选项D符合题意;
    故选:D
    【点睛】
    本题考查的是一次函数、二次函数以及反比例函数的性质,熟知相关函数的性质是解答此题的关键.
    5.(2021·浙江嘉兴市·中考真题)已知三个点,,在反比例函数的图象上,其中,下列结论中正确的是( )
    A. B. C. D.
    【答案】A
    【分析】
    根据反比例函数图像的增减性分析解答.
    【详解】
    解:反比例函数经过第一,三象限,在每一象限内,y随x的增大而减小,
    ∴当时,
    故选:A.
    【点睛】
    本题考查反比例函数的图像性质,掌握反比例函数的图像性质,利用数形结合思想解题是关键.
    6.(2021·四川自贡市·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流O(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是( )

    A.函数解析式为 B.蓄电池的电压是18V
    C.当时, D.当时,
    【答案】C
    【分析】
    将将代入求出U的值,即可判断A,B,D,利用反比例函数的增减性可判断C.
    【详解】
    解:设,将代入可得,故A错误;
    ∴蓄电池的电压是36V,故B错误;
    当时,,该项正确;
    当当时,,故D错误,
    故选:C.
    【点睛】
    本题考查反比例函数的实际应用,掌握反比例函数的图象与性质是解题的关键.
    7.(2021·浙江丽水市·中考真题)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力,将相同重量的水桶吊起同样的高度,若,则这四位同学对杆的压力的作用点到支点的距离最远的是( )

    A.甲同学 B.乙同学 C.丙同学 D.丁同学
    【答案】B
    【分析】
    根据物理知识中的杠杆原理:动力×动力臂=阻力×阻力臂,力臂越大,用力越小,即可求解.
    【详解】
    解:由物理知识得,力臂越大,用力越小,
    根据题意,∵,且将相同重量的水桶吊起同样的高度,
    ∴乙同学对杆的压力的作用点到支点的距离最远,
    故选:B.
    【点睛】
    本题考查反比例函数的应用,属于数学与物理学科的结合题型,立意新颖,掌握物理中的杠杆原理是解答的关键.
    8.(2021·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,的面积为1,则k的值为( )

    A. B. C.2 D.3
    【答案】D
    【分析】
    设D点坐标为,表示出E、F、B点坐标,求出的面积,列方程即可求解.
    【详解】
    解:设D点坐标为,
    ∵四边形ABCD是矩形,则A点坐标为,C点纵坐标为,
    ∵点E为AC的中点,则E点纵坐标为,
    ∵点E在反比例函数图象上,代入解析式得,解得,,
    ∴E点坐标为,
    同理可得C点坐标为,
    ∵点F在反比例函数图象上,同理可得F点坐标为,
    ∵点E为AC的中点,的面积为1,
    ∴,即,可得,,
    解得,
    故选:D.
    【点睛】
    本题考查了反比例函数的性质和矩形的性质,解题关键是设出点的坐标,依据面积列出方程.
    9.(2021·浙江杭州市·中考真题)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质.以下函数和具有性质的是( )
    A.和
    B.和
    C.和
    D.和
    【答案】A
    【分析】
    根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.
    【详解】
    解:当时,函数值分别为和,若存在实数,使得,
    对于A选项则有,由一元二次方程根的判别式可得:,所以存在实数m,故符合题意;
    对于B选项则有,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
    对于C选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
    对于D选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
    故选A.
    【点睛】
    本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.
    10.(2021·浙江宁波市·中考真题)如图,正比例函数的图象与反比例函数的图象相交于A,B两点,点B的横坐标为2,当时,x的取值范围是( )

    A.或 B.或
    C.或 D.或
    【答案】C
    【分析】
    根据轴对称的性质得到点A的横坐标为-2,利用函数图象即可确定答案.
    【详解】
    解:∵正比例函数与反比例函数都关于原点对称,
    ∴点A与点B关于原点对称,
    ∵点B的横坐标为2,
    ∴点A的横坐标为-2,
    由图象可知,当或时,正比例函数的图象在反比例函数的图象的上方,
    ∴当或时,,
    故选:C.
    【点睛】
    此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题的关键.
    11.(2021·江苏扬州市·中考真题)如图,点P是函数的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数的图像于点C、D,连接、、、,其中,下列结论:①;②;③,其中正确的是( )

    A.①② B.①③ C.②③ D.①
    【答案】B
    【分析】
    设P(m,),分别求出A,B,C,D的坐标,得到PD,PC,PB,PA的长,判断和的关系,可判断①;利用三角形面积公式计算,可得△PDC的面积,可判断③;再利用计算△OCD的面积,可判断②.
    【详解】
    解:∵PB⊥y轴,PA⊥x轴,点P在上,点C,D在上,
    设P(m,),
    则C(m,),A(m,0),B(0,),令,
    则,即D(,),
    ∴PC==,PD==,
    ∵,,即,
    又∠DPC=∠BPA,
    ∴△PDC∽△PBA,
    ∴∠PDC=∠PBC,
    ∴CD∥AB,故①正确;
    △PDC的面积===,故③正确;

    =
    =
    =
    =
    =,故②错误;
    故选B.
    【点睛】
    此题主要考查了反比例函数的图象和性质,k的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.
    12.(2021·重庆中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥X轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数的图象经过点E,与边AB交于点F,连接OE,OF,EF.若,则k的值为( )

    A. B. C.7 D.
    【答案】A
    【分析】
    延长EA交x轴于点G,过点F作x轴的垂线,垂足分别为H,则可得△DEA≌△AGO,从而可得DE=AG,AE=OG,若设CE=a,则DE=AG=4a,AD=DC=DE+CE=5a,由勾股定理得AE=OG=3a,故可得点E、A的坐标,由AB与x轴平行,从而也可得点F的坐标,根据 ,即可求得a的值,从而可求得k的值.
    【详解】
    如图,延长EA交x轴于点G,过点F作x轴的垂线,垂足分别为H
    ∵四边形ABCD是菱形
    ∴CD=AD=AB,CD∥AB
    ∵AB∥x轴,AE⊥CD
    ∴EG⊥x轴,∠D+∠DAE=90゜
    ∵OA⊥AD
    ∴∠DAE+∠GAO=90゜
    ∴∠GAO=∠D
    ∵OA=OD
    ∴△DEA≌△AGO(AAS)
    ∴DE=AG,AE=OG
    设CE=a,则DE=AG=4CE=4a,AD=AB=DC=DE+CE=5a
    在Rt△AED中,由勾股定理得:AE=3a
    ∴OG=AE=3a,GE=AG+AE=7a
    ∴A(3a,4a),E(3a,7a)
    ∵AB∥x轴,AG⊥x轴,FH⊥x轴
    ∴四边形AGHF是矩形
    ∴FH=AG=3a,AF=GH

    ∵E点在双曲线上


    ∵F点在双曲线上,且F点的纵坐标为4a





    解得:

    故选:A.
    【点睛】
    本题是反比例函数与几何的综合题,考查了菱形的性质,矩形的判定与性质,三角形全等的判定与性质等知识,关键是作辅助线及证明△DEA≌△AGO,从而求得E、A、F三点的坐标.
    13.(2021·四川乐山市·中考真题)如图,直线与反比例函数的图象相交于A、两点,线段的中点为点,过点作轴的垂线,垂足为点.直线过原点和点.若直线上存在点,满足,则的值为( )

    A. B.3或 C.或 D.3
    【答案】A
    【分析】
    根据题意,得,,直线:;根据一次函数性质,得;根据勾股定理,得;连接,,,根据等腰三角形三线合一性质,得,;根据勾股定理逆定理,得;结合圆的性质,得点、B、D、P共圆,直线和AB交于点F,点F为圆心;根据圆周角、圆心角、等腰三角形的性质,得;分或两种情况,根据圆周角、二次根式的性质计算,即可得到答案.
    【详解】
    根据题意,得,,即,
    ∵直线过原点和点
    ∴直线:
    ∵在直线上


    连接,,

    ∴,线段的中点为点
    ∴,
    过点作轴的垂线,垂足为点

    ∴,,


    ∴点、B、D、P共圆,直线和AB交于点F,点F为圆心

    ∵,

    ∵,且



    ∴或
    当时,和位于直线两侧,即
    ∴不符合题意
    ∴,且
    ∴,



    故选:A.
    【点睛】
    本题考查了圆、等腰三角形、反比例函数、一次函数、三角函数、勾股定理、二次根式的知识;解题的关键是熟练掌握圆心角、圆周角、等腰三角形三线合一、三角函数、勾股定理的性质,从而完成求解.
    14.(2021·浙江温州市·中考真题)如图,点,在反比例函数(,)的图象上,轴于点,轴于点,轴于点,连结.若,,,则的值为( )

    A.2 B. C. D.
    【答案】B
    【分析】
    设OD=m,则OC=,设AC=n,根据求得,在Rt△AEF中,运用勾股定理可求出m=,故可得到结论.
    【详解】
    解:如图,

    设OD=m,

    ∴OC=
    ∵轴于点,轴于点,
    ∴四边形BEOD是矩形
    ∴BD=OE=1
    ∴B(m,1)
    设反比例函数解析式为,
    ∴k=m×1=m
    设AC=n
    ∵轴
    ∴A(,n)
    ∴,解得,n=,即AC=
    ∵AC=AE
    ∴AE=
    在Rt△AEF中,,
    由勾股定理得,
    解得,(负值舍去)

    故选:B
    【点睛】
    此题考查了反比例函数的性质、待定系数法求函数的解析式.此题难度较大,注意掌握数形结合思想与方程思想的应用.

    第II卷(非选择题)
    请点击修改第II卷的文字说明

    二、填空题
    15.(2021·陕西中考真题)若,是反比例函数图象上的两点,则、的大小关系是______(填“>”、“=”或“

    相关试卷

    2021年中考数学真题复习汇编:专题2整式及运算(共50题)(第01期)(含解析):

    这是一份2021年中考数学真题复习汇编:专题2整式及运算(共50题)(第01期)(含解析),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题12 反比例函数(共32题)及答案:

    这是一份专题12 反比例函数(共32题)及答案,共14页。

    初中数学中考复习 专题32反比例函数(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题32反比例函数(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共108页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map