![2021年中考数学真题复习汇编:专题20矩形菱形正方形(第02期)(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/14784224/0-1693464717956/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年中考数学真题复习汇编:专题20矩形菱形正方形(第02期)(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/14784224/0-1693464717991/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年中考数学真题复习汇编:专题20矩形菱形正方形(第02期)(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/14784224/0-1693464718018/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021年中考数学真题复习汇编 (含解析)
2021年中考数学真题复习汇编:专题20矩形菱形正方形(第02期)(含解析)
展开
这是一份2021年中考数学真题复习汇编:专题20矩形菱形正方形(第02期)(含解析),共69页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题20矩形菱形正方形
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·四川绵阳·中考真题)如图,在边长为3的正方形中,,,则的长是( )
A.1 B. C. D.2
【答案】C
【分析】
由正方形的性质得出,,由证得,即可得出答案.
【解析】
解:四边形是正方形,
,,
∵在中,,
,
设,则,
根据勾股定理得:,
即,
解得:(负值舍去),
,
,
,
,
,
,,
,
.
故选:.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,含角的直角三角形的性质等知识,证明是解题的关键.
2.(2021·广西河池·中考真题)如图,在边长为4的正方形ABCD中,点E,F分别在CD,AC上,,,则AF的长是( )
A. B. C. D.
【答案】B
【分析】
过作的垂线分别交于,由,证明,设,根据,求得,在中,利用勾股定理即可求得.
【解析】
如图,过作的垂线分别交于,
四边形是正方形,
,
,
四边形是矩形,
,,
,
,
,
,
四边形是正方形,
,
,
,
在和中,
(AAS),
,
设,则,
,
即,
解得,
,
四边形是正方形,,
,
,
.
故选B
【点睛】
本题考查了矩形的性质,正方形的性质,三角形全等的性质与判定,勾股定理,等腰直角三角形的性质,求得是解题的关键.
3.(2021·四川巴中·中考真题)如图,矩形AOBC的顶点A、B在坐标轴上,点C的坐标是(﹣10,8),点D在AC上,将BCD沿BD翻折,点C恰好落在OA边上点E处,则tan∠DBE等于( )
A. B. C. D.
【答案】D
【分析】
先根据四边形ABCD是矩形,C(-10,8),得出BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,再由折叠的性质得到CD=DE,BC=BE=10,∠DEB=∠C=90°,利用勾股定理先求出OE的长,即可得到AE,再利用勾股定理求出DE,利用求解即可.
【解析】
解:∵四边形ABCD是矩形,C(-10,8),
∴BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,
由折叠的性质可知:CD=DE,BC=BE=10,∠DEB=∠C=90°,
在直角三角形BEO中:,
∴,
设,则
在直角三角形ADE中:,
∴,
解得,
∴,
∵∠DEB=90°,
∴,
故选D.
【点睛】
本题主要考查了矩形的性质,折叠的性质,勾股定理,三角函数,解题的关键在于能够熟练掌握相关知识进行求解.
4.(2021·四川绵阳·中考真题)如图,在等腰直角中,,、分别为、上的点,,为上的点,且,,则( )
A. B. C. D.
【答案】A
【分析】
作辅助线,构建矩形,得P是MN的中点,则MP=NP=CP,根据等腰三角形的性质和三角形外角的性质可解答.
【解析】
解:如图,过点M作MG⊥BC于M,过点N作NG⊥AC于N,连接CG交MN于H,
∴∠GMC=∠ACB=∠CNG=90°,
∴四边形CMGN是矩形,
∴CH=CG=MN,
∵PC=MN,
存在两种情况:
如图,CP=CP1=MN,
①P是MN中点时,
∴MP=NP=CP,
∴∠CNM=∠PCN=50°,∠PMN=∠PCM=90°−50°=40°,
∴∠CPM=180°−40°−40°=100°,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
∵∠CPB=117°,
∴∠BPM=117°−100°=17°,
∵∠PMC=∠PBM+∠BPM,
∴∠PBM=40°−17°=23°,
∴∠ABP=45°−23°=22°.
②CP1=MN,
∴CP=CP1,
∴∠CPP1=∠CP1P=80°,
∵∠BP1C=117°,
∴∠BP1M=117°−80°=37°,
∴∠MBP1=40°−37°=3°,
而图中∠MBP1>∠MBP,所以此种情况不符合题意.
故选:A.
【点睛】
此题主要考查了等腰直角三角形的性质,矩形的性质和判定,等腰三角形的性质等知识,作出辅助线构建矩形CNGM证明P是MN的中点是解本题的关键.
5.(2021·四川绵阳·中考真题)如图,在平面直角坐标系中,,,,,将四边形向左平移个单位后,点恰好和原点重合,则的值是( )
A.11.4 B.11.6 C.12.4 D.12.6
【答案】A
【分析】
由题意可得,的值就是线段的长度,过点作,过点作,根据勾股定理求得的长度,再根据三角形相似求得,矩形的性质得到,即可求解.
【解析】
解:由题意可得,的值就是线段的长度,
过点作,过点作,如下图:
∵,
∴,
由勾股定理得
∵
∴,
又∵
∴
∴
∴,即
解得,
∵
∴
∴
∴,即
解得
由题意可知四边形为矩形,∴
故选A
【点睛】
此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.
6.(2021·青海西宁·中考真题)如图1,动点P从矩形ABCD的顶点A出发,在边AB,BC上沿A→B→C的方向,以1cm/s的速度匀速运动到点C,的面积S(cm2)随运动时间t(s)变化的函数图象如图2所示,则AB的长是( )
A. B. C. D.
【答案】B
【分析】
由图象2可知,点P从B到C的运动时间为4s,则由动点P的运动速度可求出BC的长,再根据图象可知的面积为6cm2,即可利用面积公式求解此题.
【解析】
解:∵动点P从A点出发到B的过程中,S随t的增大而增大,动点P从B点出发到C的过程中,S随t的增大而减小.
∴观察图象2可知,点P从B到C的运动时间为4s,
∵点P的运动速度为1cm/s,
∴BC=1×4=4(cm),
∵当点P在直线AB上运动至点B时,的面积最大,
∴由图象2得:的面积6cm2,
∴,
∴cm.
故选:B.
【点睛】
本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量.要求能根据函数图象的性质和图象上的数据分析得出所需要的条件,结合实际意义得到正确的结论.
7.(2021·甘肃兰州·中考真题)如图,菱形的对角线与相交于点,点在上,连接,,,,,则( )
A.4 B.3 C. D.2
【答案】A
【分析】
根据菱形的性质以及已知条件,可得是等边三角形,可得,进而根据,可得,进而可得,根据, ,,即可求得.
【解析】
四边形是菱形,
,,
,
是等边三角形,
,
,
,
,
,
,
,
即,
,
.
故选A.
【点睛】
本题考查了菱形的性质,等边三角形的性质与判定,解直角三角形,等腰直角三角形的性质,综合运用以上知识是解题的关键.
8.(2021·甘肃兰州·中考真题)如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形(相邻纸片之间不重叠,无缝隙).若四边形的面积为13,中间空白处的四边形的面积为1,直角三角形的两条直角边分别为和,则( )
A.12 B.13 C.24 D.25
【答案】D
【分析】
根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得,进而根据面积差以及三角形面积公式求得,最后根据完全平方公式即可求得.
【解析】
菱形的对角线互相垂直平分,
个直角三角形全等;
,,
,
四边形是正方形,又正方形的面积为13,
正方形的边长为,
根据勾股定理,则,
中间空白处的四边形的面积为1,
个直角三角形的面积为,
,
,
,
.
故选D.
【点睛】
本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得是解题的关键.
9.(2021·四川德阳·中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是CD中点,连接OE,则下列结论中不一定正确的是( )
A.AB=AD B.OEAB C.∠DOE=∠DEO D.∠EOD=∠EDO
【答案】C
【分析】
由菱形的性质可得AB=AD=CD,AC⊥BD,由直角三角形的性质可得OE=DE=CE=CD=AB,即可求解.
【解析】
解:∵四边形ABCD是菱形,
∴AB=AD=CD,AC⊥BD,故选项A不合题意,
∵点E是CD的中点,
∴OE=DE=CE=CD=AB,故选项B不合题意;
∴∠EOD=∠EDO,故选项D不合题意;
故选:C.
【点睛】
本题考查了菱形的性质,直角三角形的性质,掌握菱形的性质是是解题的关键.
10.(2021·辽宁朝阳·中考真题)如图,在菱形ABCD中,点E,F分别在AB,CD上,且BE=2AE,DF=2CF,点G,H分别是AC的三等分点,则S四边形EHFG÷S菱形ABCD的值为( )
A. B. C. D.
【答案】A
【分析】
由题意可证EG∥BC,EG=2,HF∥AD,HF=2,可得四边形EHFG为平行四边形,即可求解.
【解析】
解:∵BE=2AE,DF=2FC,
∴,
∵G、H分别是AC的三等分点,
∴,,
∴,
∴EG∥BC
∴,
同理可得HF∥AD,,
∴,
故选:A.
【点睛】
本题考查了菱形的性质,由题意可证EG∥BC,HF∥AD是本题的关键.
11.(2021·黑龙江牡丹江·中考真题)如图,正方形ABCD的边长为3,E为BC边上一点,BE=1.将正方形沿GF折叠,使点A恰好与点E重合,连接AF,EF,GE,则四边形AGEF的面积为( )
A.2 B.2 C.6 D.5
【答案】D
【分析】
作FH⊥AB于H,交AE于P,设AG=GE=x,在Rt△BGE中求出x,在Rt△ABE中求出AE,再证明△ABE≌△FHG,得到FG=AE,然后根据S四边形AGEF=S△AGF+S△EGF求解即可
【解析】
解:作FH⊥AB于H,交AE于P,则四边形ADFH是矩形,由折叠的性质可知,AG=GE,AE⊥GF,AO=EO.
设AG=GE=x,则BG=3-x,
在Rt△BGE中,
∵BE2+BG2=GE2,
∴12+(3-x)2=x2,
∴x=.
在Rt△ABE中,
∵AB2+BE2=AE2,
∴32+12=AE2,
∴AE=.
∵∠HAP+∠APH=90°,∠OFP+∠OPF=90°,∠APH=∠OPF,
∴∠HAP=∠OFP,
∵四边形ADFH是矩形,
∴AB=AD=HF.
在△ABE和△FHG中,
,
∴△ABE≌△FHG,
∴FG=AE=,
∴S四边形AGEF=S△AGF+S△EGF
=
=
=
=
=5.
故选D.
【点睛】
本题考查了折叠的性质,正方形的性质,矩形的判定与性质,三角形的面积,以及勾股定理等知识,熟练掌握折叠的性质是解答本题的关键.
12.(2021·贵州遵义·中考真题)如图,将矩形纸片ABCD的两个直角进行折叠,使CB,AD恰好落在对角线AC上,B′,D′分别是B,D的对应点,折痕分别为CF,AE.若AB=4,BC=3,则线段的长是( )
A. B.2 C. D.1
【答案】D
【分析】
先利用矩形的性质与勾股定理求解 再利用轴对称的性质求解,从而可得答案.
【解析】
解: 矩形纸片ABCD,
由折叠可得:
同理:
故选:
【点睛】
本题考查的是勾股定理的应用,轴对称的性质,矩形的性质,掌握以上知识是解题的关键.
13.(2021·贵州毕节·中考真题)如图,在矩形纸片ABCD中,,,M是BC上的点,且.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点处,折痕为MN,则线段PA的长是( )
A.4 B.5 C.6 D.
【答案】B
【分析】
连接PM,证明即可得到,PA=5.
【解析】
连接PM
∵矩形纸片ABCD中,,,
∴
∵
∴
∵折叠
∴,
∴
∵PM=PM
∴
∴
∴
故选B.
【点睛】
本题考查矩形的折叠问题,解题的关键是看到隐藏条件,学会利用翻折不变性解决问题.
14.(2021·贵州黔东南·中考真题)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转,使点B落在点的位置,连接B,过点D作DE⊥,交的延长线于点E,则的长为( )
A. B. C. D.
【答案】A
【分析】
利用已知条件求得,设,将都表示出含有的代数式,利用的函数值求得,继而求得的值
【解析】
设交于点,
由题意:
是等边三角形
四边形为正方形
∴∠CBF=90°-60°=30°,
DE⊥
又
设
则
解得:
故选A
【点睛】
本题考查了正方形的性质,等边三角形的判定与性质,锐角三角函数定义,特殊角的锐角三角函数值,灵活运用锐角三角函数的定义及特殊三角函数值是解题的关键.
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题
15.(2021·四川内江·中考真题)如图,矩形中,,,对角线的垂直平分线交于点、交于点,则线段的长为 __.
【答案】
【分析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.
【解析】
解:如图:
四边形是矩形,
,又,,
,
是的垂直平分线,
,,又,
,
,
,
解得,,
四边形是矩形,
,,
,
是的垂直平分线,
,,
在和中,
,
,
,
.
故答案为:.
【点睛】
本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.
16.(2021·青海西宁·中考真题)如图,在矩形中,E为的中点,连接,过点E作的垂线交于点F,交CD的延长线于点G,连接CF.已知,,则_________.
【答案】
【分析】
由题意,先证明△AEF≌△DEG,则EF=EG,,利用等腰三角形的性质,求出,然后得到AB=CD=,则,利用勾股定理求出BC,然后得到AE的长度,即可求出FE的长度.
【解析】
解:根据题意,在矩形中,则
AB=CD,BC=AD,∠A=∠EDG=90°,
∵E为的中点,
∴AE=DE,
∵∠AEF=∠DEG,
∴△AEF≌△DEG,
∴EF=EG,;
∵CE⊥FG,
∴,
∴AB=CD=,
∴,
在直角△BCF中,由勾股定理则
,
∴AD=3,
∴,
在直角△AEF中,由勾股定理则
;
故答案为:.
【点睛】
本题考查了矩形的性质,全等三角形的判定和性质,垂直平分线的性质,勾股定理等知识,解题的关键是熟练掌握所学的知识,正确得到.
17.(2021·山东济南·中考真题)如图,一个由8个正方形组成的“”型模板恰好完全放入一个矩形框内,模板四周的直角顶点,,,,都在矩形的边上,若8个小正方形的面积均为1,则边的长为__________.
【答案】
【分析】
如图,延长交于点,连接,根据题意求得的长,设,先证明,再证明,,分别求出矩形的四边,根据矩形对边相等列方程组求得的值,进而求得的值.
【解析】
小正方形的面积为1,则小正方形的边长为,
如图,延长交于点,连接,
,,
四边形是正方形,
,
,
设,
四边形是矩形,
,
,
,
,
,,
,
,,
,
即①
②
联立
解得
故答案为:
【点睛】
本题考查了矩形的性质,正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,解二元一次方程组,勾股定理,综合运用以上知识是解题的关键.
18.(2021·山东日照·中考真题)如图,在矩形中,,,点从点出发,以的速度沿边向点运动,到达点停止,同时,点从点出发,以的速度沿边向点运动,到达点停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当为_____时,与全等.
【答案】2或
【分析】
可分两种情况:①得到,,②得到,,然后分别计算出的值,进而得到的值.
【解析】
解:①当,时,,
,
,
,
,解得:,
,
,
解得:;
②当,时,,
,
,
,解得:,
,
,
解得:,
综上所述,当或时,与全等,
故答案为:2或.
【点睛】
主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质.
19.(2021·四川绵阳·中考真题)如图,在菱形中,,为中点,点在延长线上,、分别为、中点,,,则_____.
【答案】4
【分析】
连接CG,过点C作CM AD,交AD的延长线于M,利用平行线的性质和三角形中位线定理可得CG= 2HF= ,由ABCD,得CDM= A= 60°,设DM= x,则CD= 2x,CM=x,在Rt△CMG中,借助勾股定理得,即可求出x的值,从而解决问题.
【解析】
如图,连接CG,过点C作CM AD,交AD的延长线于M,
F、H分别为CE、GE中点,
FH是△CEG的中位线,
HF=CG,
四边形ABCD是菱形,
ADBC,ABCD,
DGE =E,
EHF= DGE,
E=EHF,
HF = EF = CF,
CG= 2HF =,
ABCD,
CDM= A = 60°,
设DM= x,则CD= 2x,CM=x,
点G为AD的中点,
DG= x,GM=2x,
在Rt△CMG中,由勾股定理得:
,
x=2,
AB = CD= 2x= 4.
故答案为:4.
【点睛】
本题主要考查了菱形的性质,三角形的中位线定理,勾股定理等知识,有一定综合性,作辅助线,构造直角三角形,利用方程思想是解题的关键.
20.(2021·辽宁鞍山·中考真题)如图,,定长为a的线段端点A,B分别在射线OP,OQ上运动(点A,B不与点O重合),C为AB的中点,作关于直线OC对称的,交AB于点D,当是等腰三角形时,的度数为_____________.
【答案】或
【分析】
结合折叠及直角三角形斜边中线等于斜边一半的性质可得,设,然后利用三角形外角和等腰三角形的性质表示出,,,,从而利用分类讨论思想解题.
【解析】
解:,C为AB的中点,
,
,,
又由折叠性质可得,
,
设,则,,,,
①当时,,
,
解得,
;
②当时,,
,方程无解,
此情况不存在;
③当时,,
,
解得:,
;
综上,的度数为或,
故答案为:或.
【点睛】
此题考查折叠及直角三角形斜边中线等于斜边一半的性质,三角形外角和等腰三角形的性质,难度一般.
21.(2021·辽宁盘锦·中考真题)如图,四边形ABCD为矩形,AB=,AD=,点P为边AB上一点.以DP为折痕将△DAP翻折,点A的对应点为点A'.连结AA',AA' 交PD于点M,点Q为线段BC上一点,连结AQ,MQ,则AQ+MQ的最小值是________
【答案】
【分析】
如图,作点A关于BC的对称点T,取AD的中点R,连接BT,QT,RT,RM.想办法求出RM,RT,求出MT的最小值,再根据QA+QM=QM+QT≥MT,可得结论.
【解析】
解:如图,作点A关于BC的对称点T,
取AD的中点R,连接BT,QT,RT,RM.
∵四边形ABCD是矩形,
∴∠RAT=90°,
∵AR=DR=,AT=2AB=4,
∴RT=,
∵A,A′关于DP对称,
∴AA′⊥DP,
∴∠AMD=90°,
∵AR=RD,
∴RM=AD=,
∵MT≥RT−RM,
∴MT≥4,
∴MT的最小值为4,
∵QA+QM=QT+QM≥MT,
∴QA+QM≥4,
∴QA+QM的最小值为4.
故答案为:4.
【点睛】
本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是求出MT的最小值,属于中考常考题型.
22.(2021·辽宁锦州·中考真题)如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为__________________.
【答案】
【分析】
根据作图过程可得BF是∠EBC的平分线,然后证明△EBG≌△CBG,再利用勾股定理即可求出CG的长.
【解析】
解:如图,连接EG,
根据作图过程可知:BF是∠EBC的平分线,
∴∠EBG=∠CBG,
在△EBG和△CBG中,
,
∴△EBG≌△CBG(SAS),
∴GE=GC,∠BEG=∠C=90°,
在Rt△ABE中,AB=6,BE=BC=10,
∴AE==8,
∴DE=AD﹣AE=10﹣8=2,
在Rt△DGE中,DE=2,DG=DC﹣CG=6﹣CG,EG=CG,
∴EG2﹣DE2=DG2
∴CG2﹣22=(6﹣CG)2,
解得CG=.
故答案为:.
【点睛】
本题考查了矩形的性质,作图-基本作图,解决本题的关键是掌握矩形的性质.
23.(2021·四川宜宾·中考真题)如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论中,①点M、N的运动速度不相等;②存在某一时刻使;③逐渐减小;④.正确的是________.(写出所有正确结论的序号)
【答案】①②③④.
【分析】
先根据矩形的性质与AD=AB,得到∠ADB=30°,∠ABD=60°,AB=AO=BO,再分类讨论,当点M运动到AB的中点时,此时点N为AD的中点,则:,从而点M、N的运动速度不同,当点M运动到AB的中点时,,由AM减小的速度比AN增大的速度快,则逐渐减小,当点M在AB的中点时,才满足,得出结论.
【解析】
解:∵AD=AB,
∴tan∠ADB=,
∴∠ADB=30°,∠ABD=60°,
∵点O为BD的中点,
∴AB=AO=BO,
设AB=1,则AD=,BD=2.
①当点M与点B重合时,点N是BD的垂直平分线与AD的交点,
令AN=x,则BN=DN=,
∴,
解得:,
∴AN=,
当点M运动到AB的中点时,此时点N为AD的中点,
则:,
从而点M、N的运动速度不同,故①说法正确,符合题意;
②当点M运动到AB的中点时,,故②说法正确,符合题意;
③由①得到,AM减小的速度比AN增大的速度快,则逐渐减小,故③说法正确,符合题意;
如图,延长MO交CD于M',
∵∠MOB=∠M'OD,OB=OD,∠DBA=∠BDC,
∴△OMB≌△OM'D(ASA),
∴BM=DM',OM=OM',连接NM',
∵NO⊥MM',则MN=NM',
∵NM'2=DN2+DM'2,
∴MN2=BM2+DN2,
故④正确,
故答案为:①②③④.
【点睛】
本题考查了矩形的性质、动点问题,解题关键在于确定特殊情况,求出两点的运动路程,确定边之间的关系,得出结论.
24.(2021·广西桂林·中考真题)如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 ___.
【答案】
【分析】
连接AA′,根据旋转和正方形的性质得出∠OA′C′=45°,∠BA′O=135°,OA=OA′=AB=2,再根据等腰三角形的性质,结合已知条件得出旋转角,然后利用三角形的性质和勾股定理得出答案;
【解析】
解:连接AA′,
∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′
∴∠OA′C′=45°,∠BA′O=135°,OA=OA′=AB=2,
∴∠OA′A=∠OAA′=,
∴∠BAA′=,
∴∠ABA′=∠AA′B=,
∴∠BA′O=135°=∠AA′B+∠OA′A,
∴,
∴,∠A′AB=30°,
∴△OAA′为等边三角形,
∴AA′=AB=2,
过点A′作A′E⊥AB于E,
∵∠A′AB=30°,
则A′E=,AE=,
∴BE=,
∴A′B=,
∵A′C′=,
∴BC′= A′B+ A′C′=;
故答案为:
【点睛】
本题考查了旋转的性质、正方形的性质、等腰直角三角形以及勾股定理,解题的关键是得出旋转角得出△OAA′为等边三角形.
25.(2021·黑龙江牡丹江·中考真题)如图,矩形ABCD中,ADAB,点E在BC边上,且AE=AD,DF⊥AE于点F,连接DE,BF,BF的延长线交DE于点O,交CD于点G.以下结论:①AF=DC,②OF:BF=CE:CG,③S△BCGS△DFG,④图形中相似三角形有6对,则正确结论的序号是____.
【答案】①②
【分析】
通过证明△ABE和△ADF是等腰直角三角形,结合已知条件,可判断①正确;通过证明△DCE∽△BCG,得到,通过证明△ABF∽△ADE,得到,再通过相似和三角形的外角性质,得到OEDE,进而证得,可判断②正确;证明△BEF≌△FDG,连接CF后,可知,结合图象,即可判断③不正确;通过图形中相似三角形超过6对,可判断④不正确,问题即可得解.
【解析】
∵AEAD,ADAB,
∴AEAB.
在Rt△ABE中,∠ABE=90°,cos∠BAE=,
∴cos∠BAE=.
∴∠BAE=45°,即△ABE是等腰直角三角形.
∵在矩形ABCD中,∠BAD=90°,
∴∠DAF=45°.
∵DF⊥AE,
∴∠ADF=45°,即△ADF是等腰直角三角形.
∴ADAF.
∴AF=AB.
∵在矩形ABCD中,AB=CD,
∴AF=CD .故①正确;
又∵AF=AB,∠BAE=45°,
∴∠ABF=67.5°.
∴∠CBG=22.5°.
又∵AE=AD,∠DAE=45°,
∴∠ADE=67.5°.
∴∠CDE=22.5°.
∴∠CBG=∠CDE.
∵∠C=∠C,
∴△DCE∽△BCG.
∴.
∵在矩形ABCD中,BC=ADCD,
∴.
在△ABF和△ADE中.∠BAF=∠DAE=45°,AFAB ,AEAD ,
∴△ABF∽△ADE.
∴.
在△ABF和△OEF中,∠OEF=∠ADE=67.5°=∠ABF,
∵∠AFB=∠OFE,∠AFB=∠ABF,
∴△ABF∽△OEF,∠OEF=∠OFE.
∴OE=OF,∠EOF=45°.
又∵∠EOF=∠DFO+∠ODF =45°,∠ODF=∠ADE-∠ADF=22.5°,
∴∠ODF =∠DFO.
∴OFOD.
∴OEOFODDE.
∴ .故②正确;
在△BEF和△FDG中, BE =FD,∠EBF=∠DFG ,∠BEF =∠FDG=∠ADC-∠ADF=45°,
∴△BEF≌△FDG.
连接CF.
又∵ BC=ADADBE,
∴ .故③不正确;
∵△ABF∽△ADE,△ABF∽△OEF,
∴△ADE∽△OEF.
在△BEF和△BOE中, ∠BEF∠BOE45°,∠EBF∠OBE,
∴△BEF∽△BOE.
在△BOE和△DOG中, ∠ODG∠OBE,∠BOE∠DOG,
∴△BOE∽△DOG.
∴△BEF∽△DOG.
又∵△DCE∽△BCG,
∴图形中相似三角形超过6对,故④不正确.
综上,正确的结论是①②.
故答案为:①②.
【点睛】
本题主要考查了矩形的性质、等腰三角形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质,涉及了特殊角的三角函数值、三角形的外角性质、举反例等,是一道综合题.相似和全等是证明边的比例关系中最常用的方法.
26.(2021·辽宁丹东·中考真题)如图,在矩形中,连接,过点C作平分线的垂线,垂足为点E,且交于点F;过点C作平分线的垂线,垂足为点H,且交于点G,连接,若,,则线段的长度为_________.
【答案】
【分析】
先证明,可得CE=FE,BF=,同理:CH=GH,DG=,从而得HE=,再利用勾股定理得BD=,进而即可求解.
【解析】
解:∵BE平分∠DBC,
∴∠CBE=∠FBE,
∵CF⊥BE,
∴∠BEC=∠BEF=90°,
又∵BE=BE,
∴,
∴CE=FE,BF=
同理:CH=GH,DG=,
∴HE是的中位线,
∴HE=,
∵在矩形中,,,
∴BD=,
∴GF= BF+ DG-BD=,
∴=.
【点睛】
本题主要考查矩形的性质,勾股定理,全等三角形的判定和性质,中位线的性质,推出HE是的中位线,是解题的关键.
三、解答题
27.(2021·山东青岛·中考真题)如图,在中,为边的中点,连接并延长,交的延长线于点,延长至点,使,分别连接,,.
(1)求证:;
(2)当平分时,四边形是什么特殊四边形?请说明理由.
【答案】(1)见解析;(2)矩形,见解析
【分析】
(1)利用平行四边形的性质证明,利用中点的性质证明,结合对顶角相等,从而可得结论;
(2)先证明 结合 证明四边形是平行四边形,再利用等腰三角形的性质证明 从而可得结论.
【解析】
(1)证明:∵四边形是平行四边形,
∴,∴
又∵为边的中点,
∴
∵,,,
∴
(2)答:四边形是矩形,理由如下:
∵四边形是平行四边形,
∴,
∵,
∴,,
∴,
∵,
∴四边形是平行四边形.
∵平分,
∴.
又∵,
∴,
∴
又∵,
∴,
∴,
∴是矩形
【点睛】
本题考查的是三角形全等的判定与性质,平行四边形的性质与判定,矩形的判定,等腰三角形的判定与性质,掌握“有一个角是直角的平行四边形是矩形”是证题的关键.
28.(2021·青海西宁·中考真题)如图,四边形是菱形,对角线,相交于点O,.
(1)求证:四边形是矩形;
(2)若,,求矩形的周长.
【答案】(1)见解析;(2)
【分析】
(1)利用全等三角形性质和菱形对角线互相垂直平分,证四边形是矩形;
(2)根据菱形性质得出,,由含30度直角三角形的性质求出OB,即可求解.
【解析】
(1)证明:∵△BOC≅△CEB .
∴,(全等三角形的对应边相等)
∴四边形是平行四边形(两组对边分别相等的四边形是平行四边形)
∵四边形是菱形,
∴ (菱形的两条对角线互相垂直)
∴
∴四边形是矩形(有一个角是直角的平行四边形是矩形);
(2)∵四边形是菱形,,,
∴ (菱形的四条边相等),
∵
∴
在中,
(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)
,
∴矩形的周长.
【点睛】
本题考查了菱形的性质、全等三角形性质、平行四边形的判定和性质以及矩形的性质,熟记各种特殊四边形的判定方法和性质以及勾股定理是解题的关键.
29.(2021·四川德阳·中考真题)如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.
(1)求证:四边形MEB1N是平行四边形;
(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E是否全等,并说明理由.
【答案】(1)见解析;(2)全等,理由见解析
【分析】
(1)可证B1是EE1的中点,则EB1=EE1,根据M、N分别是AE和AE1的中点,则MN∥EB1,MN=EE1,即可证明;
(2)由S△EAF=S△FEC,可得AF=EC.然后通过SAS可证明结论.
【解析】
解:(1)证明:∵四边形ABCD是矩形,
∴∠B=90°,
∵△AB1E1是△ABE旋转所得的,
∴AE=AE1,∠AB1E1=∠AB1E=∠B=90°,
∴B1是EE1的中点,
∴EB1=EE1,
∵M、N分别是AE和AE1的中点,
∴MN∥EB1,MN=EE1,
∴EB1=MN,
∴四边形MEB1N为平行四边形,
(2)△AE1F≌△CEB1,
证明:连接FC,
∵EB1=B1E1=E1F,
∴=S△EAF,
同理,=SFEC,
∵=S△EB1C,
∴S△EAF=S△FEC,
∵AF∥EC,
∴△AEF底边AF上的高和△FEC底边上的高相等.
∴AF=EC.
∵AF∥EC,
∴∠AFE=∠FEC,
在△AE1F和△CEB1中,
,
∴△AE1F≌△CEB1(SAS).
【点睛】
本题主要考查了旋转的性质,平行四边形的判定,三角形中位线定理,以及全等三角形的判定与性质等知识,证明S△EAF=S△FEC是解题的关键.
30.(2021·江苏镇江·中考真题)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:;
(2)连接BD,∠1=30°,∠2=20°,当∠ABE= °时,四边形BFDE是菱形.
【答案】(1)见解析;(2)当∠ABE=10°时,四边形BFDE是菱形
【分析】
(1)根据平行四边形的性子和“SAS”可证△ABE≌△CDF;
(2)先证明四边形BFDE是平行四边形,再通过证明BE=DE,可得结论.
【解析】
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=30°,∠2=20°,
∴∠ABD=∠1-∠2=10°,
∴∠DBE=20°,
∴∠DBE=∠EDB=20°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为10.
【点睛】
本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.
31.(2021·辽宁鞍山·中考真题)如图,在中,G为BC边上一点,,延长DG交AB的延长线于点E,过点A作交CD的延长线于点F.求证:四边形AEDF是菱形.
【答案】见解析
【分析】
先证四边形AEDF是平行四边形,再证,则,即可得出结论.
【解析】
证明:四边形ABCD是平行四边形,
,,,
,
四边形AEDF是平行四边形,
,
,
,
,
,
,
平行四边形AEDF是菱形.
【点睛】
本题考查了平行四边形的性质,等边对等角,菱形的判定定理,熟练掌握以上几何性质是解题的关键.
32.(2021·山东滨州·中考真题)如图,矩形ABCD的对角线AC、BD相交于点O,,.
(1)求证:四边形AOBE是菱形;
(2)若,,求菱形AOBE的面积.
【答案】(1)证明过程见解答;(2)
【分析】
(1)根据BE∥AC,AE∥BD,可以得到四边形AOBE是平行四边形,然后根据矩形的性质,可以得到OA=OB,由菱形的定义可以得到结论成立;
(2)根据∠AOB=60°,AC=4,可以求得菱形AOBE边OA上的高,然后根据菱形的面积=底×高,代入数据计算即可.
【解析】
解:(1)证明:∵BE∥AC,AE∥BD,
∴四边形AOBE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OB,
∴四边形AOBE是菱形;
(2)解:作BF⊥OA于点F,
∵四边形ABCD是矩形,AC=4,
∴AC=BD=4,OA=OC=AC,OB=OD=BD,
∴OA=OB=2,
∵∠AOB=60°,
∴BF=OB•sin∠AOB=,
∴菱形AOBE的面积是:OA•BF==.
【点睛】
本题考查菱形的判定、矩形的性质,解答本题的关键是明确菱形的判定方法,知道菱形的面积=底×高或者是对角线乘积的一半.
33.(2021·四川巴中·中考真题)如图,四边形ABCD中,ADBC,AB=AD=CDBC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.
(1)求证:四边形ABED为菱形;
(2)连接BD,当CE=5时,求BD的长.
【答案】(1)证明见解析;(2)
【分析】
(1)连接BD,根据,AE是BD的垂直平分线,得到AB=AD,BE=DE,BO=OD,只需要证明△OAD≌△OEB,即可得到答案;
(2)根据(1)可以证明三角形DEC是等边三角形,从而可以证明∠BDC=90°,再利用三角函数求解即可得到答案.
【解析】
解:(1)如图所示,连接BD,
由题意可知,AE是BD的垂直平分线,
∴AB=AD,BE=DE,BO=OD,
∵AD∥BC,
∴∠OAD=∠OEB,∠ODA=∠OBE,
在△OAD和△OEB中,
,
∴△OAD≌△OEB(AAS),
∴AD=BE,
∴AD=AB=BE=ED,
∴四边形ABCD是菱形;
(2)由(1)得AD=AB=BE=ED,
∴∠DBE=∠EDB,
∵,
∴,
∴,
∴三角形DEC是等边三角形,
∴∠C=∠DEC=∠CDE=60°,
∵∠BDE+∠EBD=∠DEC,
∴∠BDE=30°,
∴∠BDC=90°
∴
【点睛】
本题主要考查了菱形的判定,平行线的性质,全等三角形的性质与判定,特殊角的三角函数,等边三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
34.(2021·江苏淮安·中考真题)已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.
【答案】见解析
【分析】
先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.
【解析】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
又∵EF∥AB,
∴四边形ABFE是平行四边形,
∵BE平分∠ABC,
∴∠ABE=∠FBE,
∵AD∥BC,
∴∠AEB=∠EBF,
∴∠ABE=∠AEB,
∴AB=AE,
∴平行四边形ABFE是菱形.
【点睛】
本题考查了平行四边形的性质、等腰三角形的判定、菱形的判定,解题关键是熟练运用相关知识进行推理证明,特别注意角平分线加平行,可证等腰三角形.
35.(2021·辽宁盘锦·中考真题)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,N为EF的中点,连结NA,以NA,NF为邻边作□ANFG.连结DG,DN,将Rt△ECF绕点C顺时针方向旋转,旋转角为(0°≤≤360°).
(1)如图1,当=0°时,DG与DN的关系为____________________;
(2)如图2,当时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)在Rt△ECF旋转的过程中,当□ANFG的顶点G落在正方形ABCD的边上,且AB=12,EC=时,连结GN,请直接写出GN的长.
【答案】(1)DG=DN,且DG⊥DN;(2)成立,理由见解析;(3)GN=或
【分析】
(1)如图1中,连接AE,AF,CN.证明△GAD≌△NCD(SAS),推出DG=DN,∠ADG=∠CDN,推出∠GDN=∠ADC=90°,可得结论;
(2)如图2中,作直线EF交AD于J,交BC于K,连接CN.证明△GAD≌△NCD(SAS),推出DG=DN,∠ADG=∠CDN,推出∠GDN=∠ADC=90°,可得结论;
(3)分两种情形:如图3-1中,当点G落在AD上时,如图3-2中,当点G落在AB上时,分别利用勾股定理求出GN即可.
【解析】
解:(1)如图1中,连接AE,AF,CN.
∵四边形ABCD是正方形,
∴AB=AD=CB=CD,∠B=∠ADF=90°,
∵CE=CF,
∴BE=DF,
∴△ABE≌△ADF(SAS),
∴AE=AF,
∵EN=NF,
∴AN⊥EF,CN=NF=EN,
∵CE=CF,EN=NF,
∴CN⊥EF,
∴A,N,C共线,
∵四边形ANFG是平行四边形,∠ANF=90°,
∴四边形ANFG是矩形,
∴AG=FN=CN,∠GAN=90°,
∵∠DCA=∠DAC=45°,
∴∠GAD=∠NCD=45°,
∴△GAD≌△NCD(SAS),
∴DG=DN,∠ADG=∠CDN,
∴∠GDN=∠ADC=90°,
∴DG⊥DN,DG=DN.
故答案为:DG⊥DN,DG=DN;
(2)结论成立.
理由:如图2中,作直线EF交AD于J,交BC于K,连接CN.
∵四边形ANFG是平行四边形,
∴AG∥KJ,AG=NF,
∴∠DAG=∠J,
∵AJ∥BC,
∴∠J=∠CKE,
∵CE=CF,EN=NF,
∴CN=NE=NF=AG,CN⊥EF,
∴∠ECN=∠CEN=45°,
∴∠EKC+∠ECK=∠ECK+∠DCN,
∴∠DCN=∠CKE,
∴∠GAD=∠DCN,
∵GA=CN,AD=CD,
∴△GAD≌△NCD(SAS),
∴DG=DN,∠ADG=∠CDN,
∴∠GDN=∠ADC=90°,
∴DG⊥DN,DG=DN;
(3)如图3-1中,当点G落在AD上时,
∵△ECN是等腰直角三角形,EC=5,
∴EN=CN=NF=5,
∵四边形ANFG是平行四边形,
∴AG=NF=5,
∵AD-CD=12,
∴DG=DN=7,
∴GN=7.
如图3-2中,当点G落在AB上时,
同法可证,CN=5,
∵△DAG≌△DCN,
∴AG=CN=5,
∴BG=AB-AG=7,BN=BC+CN=17,
综上所述,满足条件的GN的值为或
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
36.(2021·山东青岛·中考真题)已知:如图,在矩形和等腰中,,,.点从点出发,沿方向匀速运动.速度为;同时,点从点出发,沿方向匀速运动,速度为.过点作,交于点,交于点,过点作,交于点.分别连接,,设运动时间为.
解答下列问题:
(1)当时,求的值;
(2)设五边形的面积为,求与之间的函数关系式;
(3)当时,求的值;
(4)若与相交于点,分别连接和.在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
【答案】(1);(2);(3);(4)存在,
【分析】
(1)先证,得代数计算即可;
(2)如图2中,过点P作PO⊥QM于点O.证明S=S四边形DQPM+S△DNQ=(PQ+DH)•QM+QN•ND=(HA+DH)•QM+QN•ND=•AD•QM+QN•ND,可得结论.
(3)如图3中,延长NQ交BE于点G.根据PQ=PM,构建方程求解即可.
(4)存在.证明△HQW∽△AEW,△MHW∽△PAW,推出,,推出,由此构建方程求解即可
【解析】
(1)由题意可得,,,
在矩形中,
∵,,
,
在中,,
,
∴,
∵,
∴,
又∵,
∴,
∴,
∴,
∴.
答:为时,.
(2)过点作,交于点,
在等腰中,
,,
则.
∵,
∴,
∴四边形是矩形,
∴.
∵,
∴,
又∵,
∴,
∴,∴,∴.
∵,∴,
又∵,
∴,
∴,
∴,
∴,.
∴
.
答:与的函数关系式是.
(3)延长交于点,由(1),(2)可得,
,,
∵,
∴四边形是矩形,
∴,
同理可证,四边形是矩形.
∴,
当时,
∵,
∴,
∴.
又∵,
∴,
∴.
答:当时,.
(4)由(2)得,,
∵,,
∴,
∴为矩形,
∴,且.
∴,
∵,
∴,
同理可证,
∴,,
∴,
∴,
∴.
答:在运动的过程中,存在时刻,使.
【点睛】
本题属于四边形综合题,考查了矩形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.
37.(2021·甘肃兰州·中考真题)已知正方形,,为平面内两点.
(探究建模)
(1)如图1,当点在边上时,,且,,三点共线.求证:;
(类比应用)
(2)如图2,当点在正方形外部时,,,且,,三点共线.猜想并证明线段,,之间的数量关系;
(拓展迁移)
(3)如图3,当点在正方形外部时,,,,且,,三点共线,与交于点.若,,求的长.
【答案】(1)见解析;(2);理由见解析(3)
【分析】
(1)根据正方形性质以及题意证明即可得出结论;
(2)根据已知条件证明,然后证明为等腰直角三角形即可得出结论;
(3)先证明,得出为等腰直角三角形,根据勾股定理以及等腰直角三角形的性质求出的长度,即可得出结论.
【解析】
解:(1)∵四边形是正方形,,,三点共线,
∴,
∵,
∴,
∴,
在和中,
,
∴,
∴;
(2)∵,四边形是正方形,
∴,,
∴,
∵,,
∴,
∴,
在和中,
,
∴,
∴,
∴为等腰直角三角形,
∴,
即;
(3)过点D作于点H,连接BD,
∵,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,,
∵且,
∴为等腰直角三角形,
∴,
在中,,
∴,
∵是正方对角线,
∴,
∵
∴,
∴为等腰直角三角形,
∴,
∴在中,,
∴.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形判定与性质,熟知性质定理是解本题的关键.
38.(2021·辽宁沈阳·中考真题)如图,平面直角坐标系中,O是坐标原点,直线经过点,与x轴交于点A,与y轴交于点B.线段平行于x轴,交直线于点D,连接,.
(1)填空: __________.点A的坐标是(__________,__________);
(2)求证:四边形是平行四边形;
(3)动点P从点O出发,沿对角线以每秒1个单位长度的速度向点D运动,直到点D为止;动点Q同时从点D出发,沿对角线以每秒1个单位长度的速度向点O运动,直到点O为止.设两个点的运动时间均为t秒.
①当时,的面积是__________.
②当点P,Q运动至四边形为矩形时,请直接写出此时t的值.
【答案】(1),5,0;(2)见解析;(3)①12;②或.
【分析】
(1)代入点坐标即可得出值确定直线的解析式,进而求出点坐标即可;
(2)求出点坐标,根据,,即可证四边形是平行四边形;
(3)①作于,设出点的坐标,根据勾股定理计算出的长度,根据运动时间求出的长度即可确定的面积;
②根据对角线相等确定的长度,再根据、的位置分情况计算出值即可.
【解析】
解:(1)直线经过点,
,
解得,
即直线的解析式为,
当时,,
,
(2)线段平行于轴,
点的纵坐标与点一样,
又点在直线上,
当时,,
即,
,
,
,
又,
四边形是平行四边形;
(3)①作于,
点在直线上,
设点的坐标为,
,,
由勾股定理,得,
即,
整理得或8(舍去),
,
,
当时,,
,
②,
当时,,
当时,,
当点,运动至四边形为矩形时,,
,
当时,,
解得,
当时,,
解得,
综上,当点,运动至四边形为矩形时的值为或.
【点睛】
本题主要考查一次函数的性质,熟练掌握待定系数法求解析式,平行四边形的性质和矩形的性质是解题的关键.
39.(2021·山东日照·中考真题)问题背景:
如图1,在矩形中,,,点是边的中点,过点作交于点.
实验探究:
(1)在一次数学活动中,小王同学将图1中的绕点按逆时针方向旋转,如图2所示,得到结论:①_____;②直线与所夹锐角的度数为______.
(2)小王同学继续将绕点按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.
拓展延伸:
在以上探究中,当旋转至、、三点共线时,则的面积为______.
【答案】(1),30°;(2)成立,理由见解析;拓展延伸:或
【分析】
(1)通过证明,可得,,即可求解;
(2)通过证明,可得,,即可求解;
拓展延伸:分两种情况讨论,先求出,的长,即可求解.
【解析】
解:(1)如图1,,,,
,
如图2,设与交于点,与交于点,
绕点按逆时针方向旋转,
,
,
,,
又,
,
直线与所夹锐角的度数为,
故答案为:,;
(2)结论仍然成立,
理由如下:如图3,设与交于点,与交于点,
将绕点按逆时针方向旋转,
,
又,
,
,,
又,
,
直线与所夹锐角的度数为.
拓展延伸:如图4,当点在的上方时,过点作于,
,,点是边的中点,,
,,,
,,
,
、、三点共线,
,
,
,
,
由(2)可得:,
,
,
的面积;
如图5,当点在的下方时,过点作,交的延长线于,
同理可求:的面积;
故答案为:或.
【点睛】
本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.
40.(2021·山东淄博·中考真题)已知:在正方形的边上任取一点,连接,一条与垂直的直线(垂足为点)沿方向,从点开始向下平移,交边于点.
(1)当直线经过正方形的顶点时,如图1所示.求证:;
(2)当直线经过的中点时,与对角线交于点,连接,如图2所示.求的度数;
(3)直线继续向下平移,当点恰好落在对角线上时,交边于点,如图3所示.设,求与之间的关系式.
【答案】(1)见详解;(2);(3)
【分析】
(1)由题意易得,进而可得,则有,然后问题可求证;
(2)连接AQ,过点Q作QM⊥AD于点M,并延长MQ,交BC于点N,由题意易得AQ=FQ,∠ADB=45°,则有QM=MD,进而可得证,然后可得,则问题可求解;
(3)过点D作DH∥EG,交AB于点H,由题意易证四边形HEGD是平行四边形,则有,进而可得,然后可得,则问题可求解.
【解析】
(1)证明:∵四边形是正方形,
∴,
∵AF⊥ED,
∴,
∴,
∴,
∴,
∴;
(2)解:连接AQ,过点Q作QM⊥AD于点M,并延长MQ,交BC于点N,如图所示:
∵点P是AF的中点,AF⊥EQ,
∴,
∵四边形是正方形,
∴,
∴四边形MNCD是矩形,△MDQ是等腰直角三角形,
∴,
∴,
∴,
∴,
∵,
∴,即,
∴是等腰直角三角形,
∴;
(3)过点D作DH∥EG,交AB于点H,如图所示:
∴四边形HEGD是平行四边形,
∴,
∵AF⊥EG,
∴AF⊥HD,
由(1)中结论可得,
∵,
∴,,
∴,
∵,
∴,
∴,
∴,
∴,
∴与之间的关系式为.
【点睛】
本题主要考查正方形的性质、相似三角形的性质与判定、函数及等腰直角三角形的性质与判定,熟练掌握正方形的性质、相似三角形的性质与判定、函数及等腰直角三角形的性质与判定是解题的关键.
相关试卷
这是一份专题18 矩形菱形正方形(共20道)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题18矩形菱形正方形共20道原卷版docx、专题18矩形菱形正方形共20道解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份专题18 矩形菱形正方形(共20道)-2023年中考数学真题分项汇编(全国通用),文件包含专题18矩形菱形正方形共20道原卷版docx、专题18矩形菱形正方形共20道解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份2023年全国各地中考数学真题分类汇编之矩形菱形正方形(含解析),共46页。试卷主要包含了单选题,解答题,填空题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)