终身会员
搜索
    上传资料 赚现金

    2021年中考数学真题复习汇编:专题28概率(第02期)(含解析)

    立即下载
    加入资料篮
    2021年中考数学真题复习汇编:专题28概率(第02期)(含解析)第1页
    2021年中考数学真题复习汇编:专题28概率(第02期)(含解析)第2页
    2021年中考数学真题复习汇编:专题28概率(第02期)(含解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年中考数学真题复习汇编:专题28概率(第02期)(含解析)

    展开

    这是一份2021年中考数学真题复习汇编:专题28概率(第02期)(含解析),共34页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
     专题28概率
    姓名:__________________ 班级:______________ 得分:_________________
    一、单选题
    1.(2021·甘肃兰州·中考真题)如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为( )

    A. B. C. D.
    【答案】B
    【分析】
    由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面只有一个面涂有颜色,有6种结果,根据几何概率及其概率的计算公式,即可求解.
    【详解】
    解:解:由题意,在一个棱长为3cm的正方体的表面涂上颜色,将其分割成27个棱长为1cm的小正方体,
    在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,
    可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,
    满足条件的事件是取出的小正方体表面有一个面都涂色,有6种结果,
    所以所求概率为.
    故选:B.
    【点睛】
    本题考查几何概率的计算,涉及正方体的几何结构,属于基础题.
    2.(2021·辽宁沈阳·中考真题)下列说法正确的是( )
    A.任意掷一枚质地均匀的骰子,掷出的点数一定是奇数
    B.“从一副扑克牌中任意抽取一张,抽到大王”是必然事件
    C.了解一批冰箱的使用寿命,采用抽样调查的方式
    D.若平均数相同的甲、乙两组数据,,,则甲组数据更稳定
    【答案】C
    【分析】
    依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论.
    【详解】
    解:.任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;
    .“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;
    .了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;
    .若平均数相同的甲、乙两组数据,,,则乙组数据更稳定,故原说法错误,不合题意;
    故选:.
    【点睛】
    本题主要考查了随机事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    3.(2021·山东济南·中考真题)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
    A. B. C. D.
    【答案】C
    【分析】
    根据题意,用列表法求出概率即可.
    【详解】
    根据题意,设三个宣传队分别为列表如下:
    小华\小丽















    总共由9种等可能情况,她们恰好选择同一个宣传队的情况有3种,
    则她们恰好选到同一个宣传队的概率是.
    故选C
    【点睛】
    本题考查了用列表法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.
    4.(2021·山东滨州·中考真题)在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )
    A. B. C. D.
    【答案】A
    【分析】
    首先判断各图形是否是轴对称图形,再根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.
    【详解】
    解:∵线段是轴对称图形,等边三角形是轴对称图形,平行四边形不是轴对称图形,正六边形是轴对称图形,
    分别用A、B、C、D表示线段、等边三角形、平行四边形和正六边形,

    ∴随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为=,
    故选:A.
    【点睛】
    本题考查概率公式、轴对称图形,解答本题的关键是写出题目中的图形是否为轴对称图形,明确两张都是轴对称图形是同时发生的.
    5.(2021·山东日照·中考真题)下列命题:①的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;②天气预报说明天的降水概率是,则明天一定会下雨;④若一个多边形的各内角都等于,则它是正五边形,其中真命题的个数是(  )
    A.0 B.1 C.2 D.3
    【答案】B
    【分析】
    利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.
    【详解】
    解:①的算术平方根是,故原命题错误,是假命题;
    ②菱形既是中心对称图形又是轴对称图形,正确,是真命题;
    ②天气预报说明天的降水概率是,则明天下雨可能性很大,但不确定是否一定下雨,故原命题错误,是假命题;
    ④若一个多边形的各内角都等于,各边也相等,则它是正五边形,故原命题错误,是假命题;
    真命题有1个,
    故选:B.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识,难度不大.
    6.(2021·辽宁朝阳·中考真题)一个不透明的口袋中有4个红球,6个绿球,这些球除颜色外无其他差别,从口袋中随机摸出1个球,则摸到绿球的概率是( )
    A. B. C. D.
    【答案】D
    【分析】
    先求出总的球的个数,再根据概率公式即可得出摸到绿球的概率.
    【详解】
    解:∵袋中装有4个红球,6个绿球,
    ∴共有10个球,
    ∴摸到绿球的概率为:=;
    故选:D.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    7.(2021·广西百色·中考真题)骰子各面上的点数分别是1,2,…,6,抛掷一枚骰子,点数是偶数的概率是( )
    A. B. C. D.1
    【答案】A
    【分析】
    根据概率公式知,6个数中有3个偶数,故掷一次骰子,向上一面的点数为偶数的概率是.
    【详解】
    解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数为偶数,
    故其概率是=.
    故选:A.
    【点睛】
    本题主要考查了概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.
    8.(2021·江苏淮安·中考真题)下列事件是必然事件的是( )
    A.没有水分,种子发芽 B.如果a、b都是实数,那么a+b=b+a
    C.打开电视,正在播广告 D.抛掷一枚质地均匀的硬币,正面向上
    【答案】B
    【分析】
    根据事件发生的可能性大小判断即可.
    【详解】
    解:A、没有水分,种子发芽,是不可能事件,本选项不符合题意;
    B、如果a、b都是实数,那么a+b=b+a,是必然事件,本选项符合题意;
    C、打开电视,正在播广告,是随机事件,本选项不符合题意;
    D、抛掷一枚质地均匀的硬币,正面向上,是随机事件,本选项不符合题意;
    故选:B.
    【点睛】
    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    9.(2021·辽宁阜新·中考真题)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )
    A. B. C. D.
    【答案】C
    【分析】
    利用列表法或树状图即可解决.
    【详解】
    分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:

    R
    B
    W
    r
    rR
    rB
    rW
    b
    bR
    bB
    bW
    则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是.
    故选:C.
    【点睛】
    本题考查了简单事件的概率,常用列表法或画树状图来求解.
    10.(2021·黑龙江牡丹江·中考真题)妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是( )
    A. B. C. D.
    【答案】A
    【分析】
    根据题意画出树形图,求出在这两个路口都直接通过的概率为即可求解.
    【详解】
    解:由题意画树形图得,

    由树形图得共有4种等可能性,其中在这两个路口都直接通过的概率是P=.
    故选:A
    【点睛】
    本题考查了列表或画树形图求概率,理解题意,正确列表或画树形图得到所有等可能的结果是解题关键.
    11.(2021·黑龙江齐齐哈尔·中考真题)五张不透明的卡片,正面分别写有实数,,,,5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )
    A. B. C. D.
    【答案】B
    【分析】
    通过有理数和无理数的概念判断,然后利用概率计算公式计算即可.
    【详解】
    有理数有:,,;
    无理数有:,5.06006000600006……;
    则取到的卡片正面的数是无理数的概率是,
    故选:B.
    【点睛】
    本题主要考查了有理数、无理数的概念和简单概率计算,先判断后计算概率即可.
    12.(2021·广东广州·中考真题)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )
    A. B. C. D.
    【答案】B
    【分析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2名学生中恰好有2名女生的情况,再利用概率公式即可求得答案.
    【详解】
    解:画树状图得:

    ∵共有12种等可能的结果,选出的2名学生中恰好有2名女生的有6种情况;
    ∴P(2女生)=.
    故选:B.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    13.(2021·江苏徐州·中考真题)甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
    袋子 糖果
    红色
    黄色
    绿色
    总计
    甲袋
    2颗
    2颗
    1颗
    5颗
    乙袋
    4颗
    2颗
    4颗
    10颗
    若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )
    A.摸出红色糖果的概率大 B.摸出红色糖果的概率小
    C.摸出黄色糖果的概率大 D.摸出黄色糖果的概率小
    【答案】C
    【分析】
    分别对甲乙两个袋子的红色及黄色的糖果的概率进行计算,再去比较即可.
    【详解】
    解:P(甲袋摸出红色糖果),
    P(甲袋摸出黄色糖果),
    P(乙袋摸出红色糖果),
    P(乙袋摸出黄色糖果),
    ∴P(甲袋摸出红色糖果)=P(乙袋摸出红色糖果),故A,B错误;
    P(甲袋摸出黄色糖果)>P(乙袋摸出黄色糖果),故D错误,C正确.
    故选:C.
    【点睛】
    本题主要考查了简单概率的计算,掌握概率公式并能灵活掌握是解题关键.
    14.(2021·四川雅安·中考真题)下列说法正确的是( )
    A.一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为
    B.一个抽奖活动的中奖概率为,则抽奖2次就必有1次中奖
    C.统计甲,乙两名同学在若干次检测中的数学成绩发现:,,说明甲的数学成绩比乙的数学成绩稳定
    D.要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式
    【答案】D
    【分析】
    根据简单事件的概率计算即可对A作出判断;根据概率的含义即可对B作出判断;根据方差反映了数据的波动程度这一特征即可对C作出判断;根据普查的适用范围即可对D作出判断.
    【详解】
    A、由题意知,从中任意摸出一个球共有5种可能的结果数,摸出的一个球是红球有2种可能的结果数,所以从中任意摸出一个球是红球的概率为,故A选项错误;
    B、一个抽奖活动的中奖概率为,只能说抽奖2次,可能有一次中奖,也可能一次不中甚至2次都中,故B选项错误;
    C、方差的大小反映了一组数据的波动程度,方差越小,数据的波动程度越小,由于且,所以乙的波动程度更小,说明乙的成绩更稳定,故C选项错误;
    D、由于一个班的学生人数不多,可以用普查的方法来调查,故D选项正确;
    故选:D.
    【点睛】
    本题考查了统计与概率部分中的有关知识,包括概率的含义及计算,数据收集中的普查,反映一组数据特征的方差,熟悉这些知识是解决本题的关键.

    第II卷(非选择题)
    请点击修改第II卷的文字说明

    二、填空题
    15.(2021·山东青岛·中考真题)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同.摇匀后从中摸出一个球,记下颜色后再放回袋中.不断重复这一过程,共摸球100次.其中有40次摸到黑球,估计袋中红球的个数是__________.
    【答案】6
    【分析】
    估计利用频率估计概率可估计摸到黑球的概率为 ,然后根据概率公式构建方程求解即可.
    【详解】
    解:设袋中红球的个数是x个,根据题意得:

    解得:x=6,
    经检验:x=6是分式方程的解,
    即估计袋中红球的个数是6个.
    故答案为:6.
    【点睛】
    本题考查了利用频率估计概率,解题的关键是熟练掌握大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
    16.(2021·四川内江·中考真题)有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 __.
    【答案】
    【分析】
    卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果.
    【详解】
    解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,
    根据概率公式,(轴对称图形).
    故答案为:.
    【点睛】
    本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.
    17.(2021·青海西宁·中考真题)从,-1,1,2,-5中任取一个数作为a,则抛物线的开口向上的概率是______.
    【答案】
    【分析】
    根据概率计算公式,可得事件总的可能结果数5,事件发生的可能结果数2,问题即可解决.
    【详解】
    从5个数中任取一个的可能结果数为5,使抛物线的开口向上的a值有2个,分别为1和2,则所求的概率为;
    故答案为:.
    【点睛】
    本题考查了简单事件的概率的计算,二次函数的性质,求出事件总的可能结果数及事件发生的可能结果数是关键.
    18.(2021·辽宁锦州·中考真题)一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了300次球,发现有120次摸到红球,则这个口袋中红球的个数约为____.
    【答案】8
    【分析】
    估计利用频率估计概率可估计摸到红球的概率为0.4,然后根据概率公式计算这个口袋中红球的数量.
    【详解】
    解:因为共摸了300次球,发现有120次摸到红球,
    所以估计摸到红球的概率为0.4,
    所以估计这个口袋中红球的数量为20×0.4=8(个).
    故答案为:8.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    19.(2021·辽宁鞍山·中考真题)一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_________________.

    【答案】
    【分析】
    求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.
    【详解】
    解:由图可知:黑色方砖有8个小三角形,每4个三角形是大正方形面积的
    ∴黑色方砖在整个地板中所占的比值,
    ∴小球最终停留在黑色区域的概率,
    故答案为:.
    【点睛】
    本题主要考查了简单的概率计算,解题的关键在于能够准确找出黑色方砖面积与整个区域面积的关系.
    20.(2021·辽宁朝阳·中考真题)如图,一块飞镖游戏板由大小相等的小等边三角形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),则击中黑色区域的概率是____________.

    【答案】
    【分析】
    根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.
    【详解】
    解:∵总面积为9个小等边形的面积,其中阴影部分面积为3个小等边形的面积,
    ∴飞镖落在阴影部分的概率是=,
    故答案为:.
    【点睛】
    本题主要考查了概率求解问题,准确分析计算是解题的关键.
    21.(2021·广西河池·中考真题)从﹣2,4,5这3个数中,任取两个数作为点P的坐标,则点P在第四象限的概率是__________.
    【答案】
    【分析】
    先画树状图展示所有6种等可能的结果,利用第四象限点的坐标特征确定点P在第四象限的结果数,然后根据概率公式计算,即可求解.
    【详解】
    解:画出树状图为:

    共有6种等可能的结果,它们是:(-2,4),(-2,5),(4,-2),(4,5),(5,4),(5,-2),
    其中点P在第四象限的结果数为2,即(4,-2),(5,-2),
    所以点P在第四象限的概率为: .
    故答案为: .
    【点睛】
    本题考查了列表法与树状图法求概率和点的坐标特征,通过列表法或树状图法列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率是解题的关键.
    22.(2021·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.
    【答案】3
    【分析】
    分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.
    【详解】
    解:(1)假设袋中红球个数为1,
    此时袋中由1个黄球、1个红球,
    搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.
    (2)假设袋中的红球个数为2,
    列树状图如下:

    由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,
    ∴P(摸出一红一黄)=,P(摸出两红)=,不符合题意,
    (3)假设袋中的红球个数为3,
    画树状图如下:

    由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,
    ∴P(摸出一红一黄)=P(摸出两红)=,符合题意,
    所以放入的红球个数为3,
    故答案为:3.
    【点睛】
    本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    23.(2021·辽宁盘锦·中考真题)从不等式组的所有整数解中任取一个数,它是偶数的概率是________
    【答案】
    【分析】
    首先求得不等式组的所有整数解,然后由概率公式求得答案.
    【详解】
    解:∵,
    由①得:x≥1,
    由②得:x≤5,
    ∴不等式组的解集为:1≤x≤5,
    ∴整数解有:1,2,3,4,5;
    ∴它是偶数的概率是.
    故答案为:.
    【点睛】
    此题考查了概率公式的应用以及不等式组的解集.用到的知识点为:概率=所求情况数与总情况数之比.
    24.(2021·广西桂林·中考真题)在一个不透明的袋中装有大小和质地都相同的5个球:2个白球和3个红球.从中任意取出1个球,取出的球是红球的概率是 ___.
    【答案】
    【分析】
    根据概率公式即可求解.
    【详解】
    2个白球和3个红球.从中任意取出1个球,取出的球是红球的概率是
    故答案为:.
    【点睛】
    此题主要考查概率的求解,解题的关键是熟知概率公式的运用.
    25.(2021·辽宁大连·中考真题)一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为__________.
    【答案】
    【分析】
    根据题意可画出树状图,然后问题可求解.
    【详解】
    解:由题意可得树状图:

    ∴两次取出的小球标号的和等于4的概率为;
    故答案为.
    【点睛】
    本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.
    26.(2021·内蒙古通辽·中考真题)如图所示,电路连接完好,且各元件工作正常随机闭合开关,,中的两个,能让两个小灯泡同时发光的概率是__________.

    【答案】
    【分析】
    根据题意画出树状图,得到共有6种等可能性,其中能让两个小灯泡同时发光有2种等可能性,根据概率公式求解即可.
    【详解】
    解:画树状图得

    由树状图得共有6种等可能性,其中能让两个小灯泡同时发光应同时闭合,,故有2种等可能性,所以概率为.
    故答案为:
    【点睛】
    本题考查了根据题意列表或画树状图求概率,正确列表或画出树状图是解题关键.
    27.(2021·黑龙江牡丹江·中考真题)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋并摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是奇数的概率是______.
    【答案】
    【分析】
    根据题意列出树状图,然后求解概率即可得出答案.
    【详解】
    解:由题意得:

    ∴两次摸出小球上的数字之和是奇数的概率是;
    故答案为.
    【点睛】
    本题主要考查概率,熟练掌握概率的求法是解题的关键.
    28.(2021·湖北襄阳·中考真题)中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“---”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“---”上方的概率是______.


    【答案】
    【分析】
    直接由概率公式求解即可.
    【详解】
    解:“馬”移动一次可能到达的位置共有8种,
    到达“---”上方的由2种,
    故则“馬”随机移动一次,
    到达的位置在“---”上方的概率是,
    故答案为:.
    【点睛】
    本题主要考查利用概率公式计算简单的概率问题,解题的关键是掌握概率=所求情况数与总情况数之比.

    三、解答题
    29.(2021·山东青岛·中考真题)为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘.请用列表或画树状图的方法说明这个游戏是否公平.


    【答案】不公平,见解析
    【分析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之积小于4的情况,再利用概率公式求出合唱《大海啊,故乡》和合唱《红旗飘飘》的概率,然后进行比较,即可得出答案.
    【详解】
    解:根据题意画树状图如下:

    ∵共有12种等可能的结果,其中数字之积小于4的有5种结果,
    ∴合唱《大海啊,故乡》的概率是,
    ∴合唱《红旗飘飘》的概率是,
    ∵,
    ∴游戏不公平.
    【点睛】
    本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
    30.(2021·青海西宁·中考真题)某校在“庆祝建党100周年”系列活动中举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛.设竞赛成绩为x分,若规定:当时为优秀,时为良好,时为一般,现随机抽取30位同学的竞赛成绩如下:
    98
    88
    90
    72
    100
    78
    95
    92
    100
    99
    84
    92
    75
    100
    85
    90
    93
    93
    70
    92
    78
    89
    91
    83
    93
    98
    88
    85
    90
    100
    (1)本次抽样调查的样本容量是________,样本数据中成绩为“优秀”的频率是_______;
    (2)在本次调查中,A,B,C,D四位同学的竞赛成绩均为100分,其中A,B在九年级,C在八年级,D在七年级,若要从中随机抽取两位同学参加联盟校的党史知识竞赛,请用画树状图或列表的方法求出抽到的两位同学都在九年级的概率,并写出所有等可能结果.
    【答案】(1)30,0.6;(2)图表见解析,
    【分析】
    (1)根据题意,即可得到样本容量为30,找出90分及以上出现的数量,然后除以30,即可得到答案;
    (2)利用列表法得到所有可能的结果,以及抽到的两位同学都在九年级的结果,即可求出答案.
    【详解】
    解:(1)根据题意,随机抽取30位同学的竞赛成绩,
    ∴样本容量为30;
    由表格可知,90分及以上出现的次数有18次,
    ∴样本数据中成绩为“优秀”的频率是;
    故答案为:30,.
    (2)根据题意,列表如下:
    第一人
    第二人
    A
    B
    C
    D
    A

    BA
    CA
    DA
    B
    AB

    CB
    DB
    C
    AC
    BC

    DC
    D
    AD
    BD
    CD

    其中抽到的两位同学都在九年级的结果共有2种,即BA,AB,
    ∴;
    【点睛】
    本题考查了用列表法或树状图法求概率,以及抽样调查,解题的关键是掌握题意,正确的列出表格进行解题.
    31.(2021·辽宁沈阳·中考真题)某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A,B,C依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.
    (1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是__________.
    (2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.
    【答案】(1);(2)
    【分析】
    (1)直接根据概率公式求解即可;
    (2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
    【详解】
    解:(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是,
    故答案为:;
    (2)列表如下:
















    由表可知,共有9种等可能结果,其中小辰和小安选择同一种型号免洗洗手液有3种结果,
    所以小辰和小安选择同一种型号免洗洗手液的概率为.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
    32.(2021·江苏镇江·中考真题)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.
    【答案】
    【分析】
    首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果和满足条件的结果数,再根据概率公式求解即可.
    【详解】
    解:画树状图得:

    共8种等可能情况,其中这三人在同一个献血站献血的有2种结果,
    所以这三人在同一个献血站献血的概率为.
    【点睛】
    此题考查了树状图法求概率.注意树状图法适台两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
    33.(2021·辽宁鞍山·中考真题)为了加快推进我国全民新冠病毒疫苗接种,在全国范围内构筑最大免疫屏障,各级政府积极开展接种新冠病毒疫苗的宣传工作.某社区印刷了多套宣传海报,每套海报四张,海报内容分别是:
    A.防疫道路千万条,接种疫苗第一条;
    B.疫苗接种保安全,战胜新冠靠全员;
    C.接种疫苗别再拖,安全保障好处多;
    D.疫苗接种连万家,平安健康乐全家.
    志愿者小张和小李利用休息时间到某小区张贴海报.
    (1)小张从一套海报中随机抽取一张,抽到B海报的概率是   .
    (2)小张和小李从同一套海报中各随机抽取一张,用列表法或画树状图法,求他们两个人中有一个人抽到D海报的概率.
    【答案】(1);(2).
    【分析】
    (1)直接由概率公式求解即可;
    (2)画树状图,共有12种等可能的结果,小张和小李两个人中有一个人抽到D海报的结果有6种,再由概率公式求解即可.
    【详解】
    解:(1)每套海报四张
    小张从一套海报中随机抽取一张,抽到B海报的概率是,
    故答案为:;
    (2)画树状图如图:

    共有12种等可能的结果,小张和小李两个人中有一个人抽到D海报的结果有6种,
    小张和小李两个人中有一个人抽到D海报的概率为.
    【点睛】
    本题考查了概率的计算,用列表法或画树状图法求概率,掌握概率的计算方法是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.
    34.(2021·四川德阳·中考真题)为庆祝中国共产党建党100周年,某校举行了“传党情,颂党恩”知识竞赛.为了解全校学生知识掌握情况,学校随机抽取部分竞赛成绩制定了不完整的统计表和频数分布直方图.
    分数x(分)
    频数(人)
    频率
    90≤x<100
    80
    a
    80≤x<90
    60
    0.3
    70≤x<80

    0.18
    60≤x<70
    b
    0.12
    (1)请直接写出表中a,b的值,并补全频数分布直方图;
    (2)竞赛成绩在80分以上(含80分)记为优秀,请估计该校3500名参赛学生中有多少名学生成绩优秀;
    (3)为了参加市上的“传党情,颂党恩”演讲比赛,学校从本次知识竞赛成绩优秀的学生中再次选拔出演讲水平较好的三位同学,其中男生一位、女生两位,现从中任选两位同学参加,请利用画树状图或列表的方法,求选中的两位同学恰好是一男一女的概率.

    【答案】(1)a=0.4、b=24,补全图形见解答;(2)2450名;(3)
    【分析】
    (1)先由80≤x<90的频数及频率求出样本容量,再根据频率=频数÷样本容量求解即可;
    (2)总人数乘以样本中竞赛成绩在80分以上(含80分)的频率和即可;
    (3)画树状图列出所有等可能结果,从中找到一男一女的结果数,再根据概率公式求解即可.
    【详解】
    解:(1)样本容量为60÷0.3=200,
    ∴a=80÷200=0.4,b=200×0.12=24,
    70≤x<80对应的频数为200×0.18=36,
    补全图形如下:

    (2)估计该校3500名参赛学生中成绩优秀的学生人数为3500×(0.4+0.3)=2450(名);
    (3)画树状图如下:

    由树状图知,共有6种等可能结果,其中选中的两位同学恰好是一男一女的有4种结果,
    所以选中的两位同学恰好是一男一女的概率为.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
    35.(2021·辽宁朝阳·中考真题)为了迎接建党100周年,学校举办了“感党恩•跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上.
    (1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是 ;
    (2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率.
    【答案】(1);(2)见解析,
    【分析】
    (1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;
    (2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率.
    【详解】
    解:(1)∵共有4种可能出现的结果,其中是舞蹈社团D的有1种,
    ∴小颖从中随机抽取一张卡片是舞蹈社团D的概率是,
    故答案为:;
    (2)用列表法表示所有可能出现的结果如下:

    A
    B
    C
    D
    A
    ——
    AB
    AC
    AD
    B
    BA
    ——
    BC
    BD
    C
    CA
    CB
    ——
    CD
    D
    DA
    CB
    DC
    ——
    共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,
    ∴小颖抽取的两张卡片中有一张是演讲社团C的概率是=.
    【点睛】
    本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键.
    36.(2021·辽宁盘锦·中考真题)某校七、八年级各有500名学生,为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及以上为优秀),相关数据统计、整理如下:七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10;

    (1)填空:=________,=________;
    (2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可);
    (3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;
    (4)现从七、八年级获得10分的4名学生中随机抽取2人参加市党史知识竞赛,请用列表或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.
    【答案】(1)=8, =8;(2)见解析;(3)700人;(4)图表见解析,
    【分析】
    (1)根据中位数的定义:可以直接从所给数据求得,从所给条形图分析解决;
    (2)七、八年级的平均数和中位数相同,七年级的优秀率大于八年级的优秀率,即可求解;
    (3)由七、八年级的总人数分别乘以优秀率,再相加即可;
    (4)根据题意列表,然后求出所有的等可能的结果数,然后求出恰好每个年级都有一个的结果数,然后计算即可.
    【详解】
    解:(1)由题意可知:=8, =8;
    (2)七年级学生的党史知识掌握得较好,理由如下:
    ∵七年级和八年级的平均数相同,但是七年级的优秀率大于八年级的优秀率
    ∴七年级学生的党史知识掌握得较好;
    (3)从现有样本估计全年级,七年级达到优秀的人数可能有500人×80%=400人,
    八年级达到优秀的人数可能有500人×60%=300人,
    所以两个年级能达优秀的总人数可能会有700人;
    (4)把七年级的学生记做A,八年级的三名学生即为B、C、D,列表如下:

    A
    B
    C
    D
    A

    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)

    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)

    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)

    由表知,一共有12种等可能性的结果,恰好每个年级都有一个的结果数是6,
    两人中恰好是七八年级各1人的概率是 .
    【点睛】
    本题主要考查了统计与概率,用样本估计总体,列表或画树状图求概率,中位数的定义等等,解题的关键在于能够熟练掌握相关知识进行求解.
    37.(2021·辽宁锦州·中考真题)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.

    (1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为   ;
    (2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
    【答案】(1);(2)图表见解析,
    【分析】
    (1)直接利用概率公式求解即可;
    (2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.
    【详解】
    解:(1)小明随机抽取1张卡片,抽到卡片编号为C的概率为,
    故答案为:;
    (2)画树状图如下:

    共有9种等可能的结果数,其中两个班恰好选择一首歌曲的有3种结果,
    所以两个班级恰好抽到同一首歌曲的概率为=.
    【点睛】
    本题考查的是用列表法或画树状图法求概率与古典概率的求解方法,解题的关键是理解列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.
    38.(2021·江苏淮安·中考真题)在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1,现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.
    (1)第一次抽到写有负数的卡片的概率是   ;
    (2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.
    【答案】(1);(2)
    【分析】
    (1)用负数的个数除以数字的总个数即可;
    (2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
    【详解】
    解:(1)负数的个数有1个,数字的总个数是3个,
    所以第一次抽到写有负数的卡片的概率是,
    故答案为:;
    (2)画树状图为:

    共有9种等可能的结果数,其中两次抽出的卡片上数字都为正数的有4种结果,
    所以两次抽出的卡片上数字都为正数的概率为.
    【点睛】
    本题考查的是求概率和树状图,熟练掌握概率的意义是解决本题的关键.
    39.(2021·四川巴中·中考真题)为迎接建党100周年、巴中市组织了多形式的党史学习教育活动,某校开展了以“听党话、跟党走”为主题的知识竞赛,成绩以A、B、C、D四个等级呈现.现将九年级学生成绩统计如图所示.
    (1)该校九年级共有 名学生,“D”等级所占圆心角的度数为 ;
    (2)请将条形统计图补充完整;
    (3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.

    【答案】(1)500,36°(2)见解析(3)不合理;理由见解析
    【分析】
    (1)由A等级的学生除以所占的比例求出该校九年级共有的学生,即可解决问题;
    (2)求出B等级的人数,将条形统计图补充完整即可;
    (3)画树状图,共有12种等可能的结果,选甲乙的结果有8种,选丙丁的结果有4种,再由概率公式求出选甲乙的概率和选丙丁的概率,即可得出结论.
    【详解】
    解:(1)该校九年级共有学生:150÷30%=500(名),
    则D等级所占圆心角的度数为:360°×=36°,
    故答案为:500,36°;
    (2)B等级的人数为:500−150−100−50=200(名),
    将条形统计图补充完整如下:

    (3)此规则不合理,理由如下:
    画树状图如图:

    共有12种等可能的结果,选甲乙的结果有8种,选丙丁的结果有4种,
    ∴选甲乙的概率为=,选丙丁的概率为=,
    ∵>,
    ∴此规则不合理.
    【点睛】
    本题考查了树状图法求概率以及条形统计图和是扇形统计图,解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    40.(2021·西藏·中考真题)为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.

    (1)在抽取的200名学生中,选择“演讲比赛”的人数为  ,在扇形统计图中,m的值为  .
    (2)根据本次调查结果,估计全校2000名学生中选择“文艺汇演”的学生大约有多少人?
    (3)现从喜爱“知识竞赛”的四名同学a、b、c、d中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a同学参加的概率.
    【答案】(1)40人,30;(2)800人;(3).
    【分析】
    (1)总人数乘以A对应的百分比即可求出其人数,再根据四种方案的人数之和等于总人数求出C方案人数,再用C方案人数除以总人数即可得出m的值;
    (2)总人数乘以样本中B方案人数所占比例;
    (3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
    【详解】
    解:(1)在抽取的200名学生中,选择“演讲比赛”的人数为200×20%=40(人),
    则选择“书画展览”的人数为200﹣(40+80+20)=60(人),
    ∴在扇形统计图中,m%=×100%=30%,即m=30,
    故答案为:40人,30;
    (2)估计全校2000名学生中选择“文艺汇演”的学生大约有2000×=800(人);
    (3)列表如下:

    a
    b
    c
    d
    a

    (b,a)
    (c,a)
    (d,a)
    b
    (a,b)

    (c,b)
    (d,b)
    c
    (a,c)
    (b,c)

    (d,c)
    d
    (a,d)
    (b,d)
    (c,d)

    由表可知,共有12种等可能结果,其中a同学参加的有6种结果,
    所以a同学参加的概率为=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.



    相关试卷

    专题28 概率-三年(2020-2022)中考数学真题分项汇编(湖北专用):

    这是一份专题28 概率-三年(2020-2022)中考数学真题分项汇编(湖北专用),文件包含专题28概率原卷版docx、专题28概率解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。

    专题27 概率- 2023年中考数学真题分类汇编(通用版含解析):

    这是一份专题27 概率- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题27概率共50题解析版docx、专题27概率共50题原卷版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。

    专题28 概率-三年(2020-2022)中考数学真题分项汇编(湖北专用):

    这是一份专题28 概率-三年(2020-2022)中考数学真题分项汇编(湖北专用),文件包含专题28概率解析版docx、专题28概率原卷版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map