- 2022年湖北省随州市中考数学真题(解析版) 试卷 1 次下载
- 2022年湖北省十堰市中考数学真题(解析版) 试卷 0 次下载
- 2022年湖北省恩施州中考数学真题(解析版) 试卷 0 次下载
- 2022年湖北省鄂州市中考数学真题(解析版) 试卷 0 次下载
- 湖北省孝感市2020年中考数学试题 试卷 0 次下载
2022年湖北省江汉油田、潜江、天门、仙桃中考数学真题(解析版)
展开江汉油田 潜江 天门 仙桃2022年初中学业水平考试(中考)
数学试卷
(本卷共6页,满分120分,考试时间120分钟)
注意事项:
1.答题前,考生务必将自己的姓名,准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.
2.选择的答案选出后,必须使用2B铅笔把答题卡上对应的答案标号涂黑,如需改动,先用橡皮擦干净后,再选涂其他答案标号.非选择题答案必须使用0.5mm黑色墨水签字笔填写在答题卡对应的区域内,写在本试卷上无效.
3.考试结来后,请将本试卷和答题卡一并交回,
一、选择题(本大题共10个小题,每小题3分,满分30分,在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)
1. 在1,-2,0,这四个数中,最大的数是( )
A. 1 B. -2 C. 0 D.
【答案】D
【解析】
【分析】根据实数的大小比较法则“正数>0>负数;两个负数比大小,绝对值大的反而小”进行比较分析.
【详解】解:∵,
∴最大的数是
故选:D.
【点睛】本题考查实数的大小比较,理解“正数>0>负数;两个负数比大小,绝对值大的反而小”是解题关键.
2. 如图是一个立体图形的三视图,该立体图形是( )
A. 长方体 B. 正方体 C. 三棱柱 D. 圆柱
【答案】A
【解析】
【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.
【详解】解:根据题意得:该几何体的三视图为长方形和正方形,
∴该几何体是长方体.
故选:A
【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.
3. 下列说法正确的是( )
A. 为了解我国中小学生的睡眠情况,应采取全面调查的方式
B. 一组数据1,2,5,5,5,3,3的众数和平均数都是3
C. 若甲、乙两组数的方差分别是0.01,0.1,则甲组数据比乙组数据更稳定
D. 抛掷一枚硬币200次,一定有100次“正面向上”
【答案】C
【解析】
【分析】可根据调查的选择、平均数和众数的求法、方差及随机事件的意义,逐个判断得结论.
【详解】解:因为我国中小学生人数众多,其睡眠情况也不需要特别精确,
所以对我国中小学生的睡眠情况的调查,宜采用抽样调查,故选项A不正确;
因为B中数据据1,2,5,5,5,3,3,重复出现次数最多的是5,平均数为,故该组数据的众数与平均数都不是3,,
所以选项B说法不正确;
因为0.01<0.1,方差越小,波动越小,数据越稳定,
所以甲组数据比乙组数据稳定,故选项C说法正确;
因为抛掷硬币属于随机事件,抛掷一枚硬币200次,不一定有100次“正面朝上”
故选项D说法不正确.
故选:C.
【点睛】本题的关键在于掌握调查的选择、平均数和众数的求法、方差及随机事件的意义.
4. 如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于( )
A. 26° B. 64° C. 52° D. 128°
【答案】B
【解析】
【分析】根据平行线的性质及角平分线的定义解答即可.
【详解】解:∵ABCD,
∴∠BEF+∠EFG=180°,
∴∠BEF=180°﹣52°=128°;
∵EG平分∠BEF,
∴∠BEG=64°;
∴∠EGF=∠BEG=64°(内错角相等).
故选:B.
【点睛】本题考查了平行线的性质,角平分线的定义,解答本题用到的知识点为:两直线平行,内错角相等;角平分线分得相等的两角.
5. 下列各式计算正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】由合并同类二次根式判断A,B,由二次根式的乘除法判断C,D.
【详解】解:A、原计算错误,该选项不符合题意;
B、原计算错误,该选项不符合题意;
C、正确,该选项符合题意;
D、原计算错误,该选项不符合题意;
故选:C.
【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.
6. 一个扇形的弧长是,其圆心角是150°,此扇形的面积为( )
A. B. C. D.
【答案】B
【解析】
【分析】先求出该扇形的半径,再求其面积即可;
【详解】解:该扇形的半径为:,
∴扇形的面积为:,
故选:B.
【点睛】本题主要考查扇形面积的求解,掌握扇形面积的求解公式是解题的关键.
7. 二次函数的图象如图所示,则一次函数的图象经过( )
A. 第一、二、三象限 B. 第一、二、四象限
C. 第一、三、四象限 D. 第二、三、四象限
【答案】D
【解析】
【分析】根据抛物线的顶点在第四象限,得出m<0,n<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.
【详解】解:∵抛物线的顶点(-m,n)在第四象限,
∴-m>0,n<0,
∴m<0,
∴一次函数y=mx+n的图象经过二、三、四象限,
故选:D.
【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.
8. 若关于x的一元二次方程有两个实数根,,且,则( )
A. 2或6 B. 2或8 C. 2 D. 6
【答案】A
【解析】
【分析】根据一元二次方程有实数根先确定m的取值范围,再根据一元二次方程根与系数的关系得出,把变形为,再代入得方程,求出m的值即可.
【详解】解:∵关于x的一元二次方程有两个实数根,
∴,
∴
∵是方程的两个实数根,
∵,
又
∴
把代入整理得,
解得,
故选A
【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)由根与系数的关系结合,找出关于m的一元二次方程.
9. 由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C都在格点上,∠O=60°,则tan∠ABC=( )
A. B. C. D.
【答案】C
【解析】
【分析】证明四边形ADBC为菱形,求得∠ABC=30°,利用特殊角的三角函数值即可求解.
【详解】解:连接AD,如图:
∵网格是有一个角60°为菱形,
∴△AOD、△BCE、△BCD、△ACD都是等边三角形,
∴AD= BD= BC= AC,
∴四边形ADBC为菱形,且∠DBC=60°,
∴∠ABD=∠ABC=30°,
∴tan∠ABC= tan30°=.
故选:C.
【点睛】本题考查了菱形的判定和性质,特殊角的三角函数值,证明四边形ADBC为菱形是解题的关键.
10. 如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为( )
A. B.
C. D.
【答案】A
【解析】
【分析】根据题意,设小正方形运动速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.
【详解】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;
①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt(vt≤1);
②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3;
③小正方形穿出大正方形,S=2×2-(1×1-vt)=3+vt(vt≤1).
分析选项可得,A符合,C中面积减少太多,不符合.
故选:A.
【点睛】本题主要考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.
二、填空题(本大题共5个小题,每小题3分,满分15分.请将答案直接填写在答题卡对应的横线上)
11. 科学家在实验室中检测出某种病毒的直径的为0.000000103米,该直径用科学记数法表示为___________米.
【答案】1.03×10-7
【解析】
【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.
【详解】解:0.000000103=1.03×10-7.
故答案为:1.03×10-7
【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键.
12. 有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.
【答案】23.5
【解析】
【分析】设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,根据“3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨”,即可得出关于x,y的二元一次方程组,再整体求得(4x+3y)即可得出结论.
【详解】解:设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,
依题意,得:,
两式相加得8x+6y=47,
∴4x+3y=23.5(吨) ,
故答案为:23.5.
【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
13. 从2名男生和2名女生中任选2名学生参加志愿者服务,那么选出的2名学生中至少有1名女生的概率是___________.
【答案】
【解析】
【分析】列表得出所有等可能结果,利用概率公式求解可得.
【详解】解:列表得,
男
男
女
女
男
(男,男)
(男,女)
(男,女)
男
(男,男)
(男,女)
(男,女)
女
(女,男)
(女,男)
(女,女)
女
(女,男)
(女,男)
(女,女)
∵所有等可能的情况有12种,其中所选出的2名学生中至少有1名女生的有10种,
∴选出的2名学生中至少有1名女生的概率为.
故答案为:
【点睛】此题考查了列表法或树状图法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
14. 在反比例的图象的每一支上,y都随x的增大而减小,且整式是一个完全平方式,则该反比例函数的解析式为___________.
【答案】
【解析】
【分析】利用完全平方公式的结构特征判断可求出k的值,再根据反比例函数的性质即可确定k的值.
【详解】解:∵x2-kx+4是一个完全平方式,
∴-k=±4,即k=±4,
∵在在反比例函数y=的图象的每一支上,y都随x的增大而减小,
∴k-1>0,
∴k>1.
解得:k=4,
∴反比例函数解析式为,
故答案为:.
【点睛】本题考查了反比例函数的性质,完全平方式,根据反比例函数的性质得出k-1>0是解此题的关键.
15. 如图,点P是上一点,是一条弦,点C是上一点,与点D关于对称,交于点E,与交于点F,且.给出下面四个结论:①平分; ②; ③; ④为的切线.其中所有正确结论的序号是_________________.
【答案】①②④
【解析】
【分析】根据点AB为CD的垂直平分线,得出BD=BC,AD=AC,根据等边对等角得出∠BDC=∠BCD,利用平行线性质可判断①正确;利用△ADB≌△ACB(SSS)得出∠EAB=∠CAB,利用圆周角弧与弦关系可判断②正确;根据等弧所对的圆周角相等可得∠AEF≠∠ABE,从而可得△AEF与△ABE不相似,即可判断③;连结OB,利用垂径定理得出OB⊥CE,利用平行线性质得出OB⊥BD,即可判断④正确.
【详解】解:∵点C是上一点,与点D关于对称,
∴AB为CD垂直平分线,
∴BD=BC,AD=AC,
∴∠BDC=∠BCD,
∵,
∴∠ECD=∠CDB,
∴∠ECD=∠BCD,
∴CD平分∠BCE,故①正确;
在△ADB和△ACB中,
∵AD=AC,BD=BC,AB=AB,
∴△ADB≌△ACB(SSS),
∴∠EAB=∠CAB,
∴,
∴BE=BC=BD,故②正确;
∵AC≠AE,
∴≠,
∴∠AEF≠∠ABE,
∴△AEF与△ABE不相似,故③错误;
连结OB,
∵,CE为弦,
∴OB⊥CE,
∵,
∴OB⊥BD,
∴BD为的切线.故④正确,
∴其中所有正确结论的序号是①②④.
故答案为①②④.
.
【点睛】本题考查轴对称性质,线段垂直平分线性质,角平分线判定,三角形全等判断于性质,垂径定理,切线判断,掌握轴对称性质,线段垂直平分线性质,角平分线判定,三角形全等判断于性质,垂径定理,切线判断是解题关键.
三、解答题(本大题共9个题,满分75分)
16. (1)化简:;
(2)解不等式组,并把它的解集在数轴上表示出来.
【答案】(1);(2)-2<x≤4.在数轴上表示见解析
【解析】
【分析】(1)先算括号内的减法,把除法变成乘法,最后根据分式的乘法法则进行计算即可;
(2)先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】解:(1)
=;
(2),
解不等式①得:x>-2,
解不等式②得:x≤4,
所以不等式组的解集是-2<x≤4.
在数轴上表示如图所示:
.
【点睛】本题考查了分式的混合运算和解一元一次不等式组,能正确根据分式的运算法则进行化简是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.
17. 已知四边形为矩形.点E是边的中点.请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.
(1)在图1中作出矩形的对称轴m,使;
(2)在图2中作出矩形的对称轴n:使.
【答案】(1)见解析 (2)见解析
【解析】
【分析】(1)连接AC,BD,相交于点O,过O,E作直线m即可;
(2)由(1)知四边形ABFE为矩形,连接AF、BE交于点H,过O,H点作直线n即可.
【小问1详解】
如图所示,直线m即为所求作
【小问2详解】
如图所示,直线n即为所求作
【点睛】本题主要考查了求作矩形的对称轴,熟练掌握矩形的性质是解答此题的关键.
18. 为了解我市中学生对疫情防控知识的掌握情况,在全市随机抽取了m名中学生进行了一次测试,随后绘制成如下尚不完整的统计图表;(测试卷满分100分按成绩划分为A,B,C,D四个等级)
等级
成绩x
频数
A
48
B
n
C
32
D
8
根据以上信息,解答下列问题:
(1)填空:
① , , ;
②抽取的这m名中学生,其成绩的中位数落在 等级(填A,B,C或D);
(2)我市约有5万名中学生,若全部参加这次测试,请你估计约有多少名中学生的成绩能达到A等级.
【答案】(1)①200;112;56;②B
(2)12000名
【解析】
【分析】(1)①用C等级的人数除以所占百分比即可得出m的值;用被调查的总人数减去A、C、D等级的人数即可得出B等级人数,即可求出p的值;
②根据中位数的定义求解即可;
(2)用50000乘以A等级所占百分比即可得到结论.
小问1详解】
解:①32÷16%=200(名)
即m的值为200;
n=200-48-32-8=112;
p%=112÷200=56%
∴p=56
故答案为:200;112;56;
②200个数据按大小顺序排列,最中间的2个数据是第100个的101个,
而8+32=40<100,112+32+8=152>101,
所以,中位数落在B等级,
故答案为:B;
【小问2详解】
(名),
答:估计约有12000名中学生的成绩能达到A等级.
【点睛】此题主要考查了扇形统计图、统计表的意义和表示数据的特征,理解中位数的意义是正确解答的前提,样本估计总体是统计中常用的方法.
19. 小红同学在数学活动课中测量旗杆的高度,如图,己知测角仪的高度为1.58米,她在A点观测杆顶E的仰角为30°,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60°,求旗杆的高度.(结果保留小数点后一位)(参考数据:)
【答案】旗杆的高度约为18.9米.
【解析】
【分析】过点D作DG⊥EF于点G,设EG=x,则EF=1.58+x.分别在Rt△AEG和Rt△DEG中,利用三角函数解直角三角形可得AG、DG,利用AD=20列出方程,进而得到EF的长度.
【详解】解:过点D作DG⊥EF于点G,设EG=x,
由题意可知:
∠EAG=30°,∠EDG=60°,AD=20米,GF=1.58米.
在Rt△AEG中,tan∠EAG=,
∴AG=x,
在Rt△DEG中,tan∠EDG=,
∴DG=x,
∴x-x=20,
解得:x≈17.3,
∵EF=1.58+x=18.9(米).
答:旗杆的高度约为18.9米.
【点睛】此题主要考查解直角三角形的应用-仰角俯角问题,熟练掌握锐角的三角函数概念是解题关键.
20. 如图,,,点A,B分别在函数()和()的图象上,且点A的坐标为.
(1)求,的值:
(2)若点C,D分在函数()和()的图象上,且不与点A,B重合,是否存在点C,D,使得,若存在,请直接出点C,D的坐标:若不存在,请说明理由.
【答案】(1),
(2),
【解析】
【分析】(1)过点A作AE⊥y轴交于点E,过点B作BF⊥y轴交于点F,将点A代入即可求得,证明△AOE≌△BOF,从而求得点B坐标,将点B代入求得;(2)由可得OC=OA=OB=OD,可得C与B关于x轴对称,A与D关于x轴对称即可求得坐标.
【小问1详解】
如图,过点A作AE⊥y轴交于点E,过点B作BF⊥y轴交于点F,
∵,
∴∠AOE+∠BOF=90°,
又∵∠AOE+∠EAO=90°,
∴∠BOF=∠EAO,
又∵∠AEO=∠OFB,OA=OB,
∴△AOE≌△BOF(AAS),
∴AE=OF,OE=BF,
∵点A的坐标为,
∴AE=1,OE=4,
∴OF=1,BF=4,
∴B(4,-1),
将点A、B分别代入和,
解得,,;
【小问2详解】
由(1)得,点A在图象上,点B在图象上,两函数关于x轴对称,
∵,
∴OC=OA=OB=OD,
只需C与B关于x轴对称,A与D关于x轴对称即可,如图所示,
∴点C(4,1),点D(1,-4).
【点睛】本题考查反比例函数图象上点坐标特征和全等三角形的判定和性质,熟知反比例函数的性质是解题的关键.
21. 如图,正方形内接于,点E为的中点,连接交于点F,延长交于点G,连接.
(1)求证:;
(2)若.求和的长.
【答案】(1)见详解 (2)FB=
【解析】
【分析】(1)根据正方形性质得出AD=BC,可证∠ABD=∠CGB,再证△BFE∽△GFB即可;
(2)根据点E为AB中点,求出AE=BE=3,利用勾股定理求得BD=,CE=,然后证明△CDF∽△BEF,得出DF=2BF,CF=2EF,求出BF=,EF=即可.
【小问1详解】
证明:正方形内接于,
∴AD=BC,
∴,
∴∠ABD=∠CGB,
又∵∠EFB=∠BFG,
∴△BFE∽△GFB,
∴,
即;
【小问2详解】
解:∵点E为AB中点,
∴AE=BE=3,
∵四边形ABCD为正方形,
∴CD=AB=AD=6,BD=,CE=,
∵CD∥BE,
∴△CDF∽△EBF,
∴,
∴DF=2BF,CF=2EF,
∴3BF=BD=,3EF=,
∴BF=,EF=,
由(1)得FG=.
【点睛】本题考查圆内接正方形性质,弧,弦,圆周角关系,勾股定理,三角形相似判定与性质,掌握圆内接正方形性质,弧,弦,圆周角关系,勾股定理,三角形相似判定与性质是解题关键.
22. 某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:
销售单价x(元/千克)
…
20
22.5
25
37.5
40
…
销售量y(千克)
…
30
27.5
25
125
10
…
(1)根据表中的数据在下图中描点,并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;
(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本),
①求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;
②超市本着“尽量让顾客享受实惠”的销售原则,求(元)时的销售单价.
【答案】(1)图象见解析,y与x的函数关系式为:
(2)①w关于x的函数关系式为:w=;当w取最大值,销售单价为34元;
②(元)时的销售单价为30元
【解析】
【分析】(1)根据表格描点连线即可做出函数图像,然后利用待定系数法,将表格中数值代入进行求参数即可;
(2)①由(1)中关系式可求得w=,结合函数的性质可知当w取最大值,销售单价为34元;
②解方程,可知,,根据超市本着“尽量让顾客享受实惠”的销售原则,可知符合题意.
【小问1详解】
解:作图如图所示,
由图可知,y与x是一次函数关系,设y与x的函数关系式为:,
将x=20,y=30;x=40,y=10,代入得,,
解得:,
即y与x的函数关系式为:;
【小问2详解】
①由题意可知w关于x的函数关系式为:w==,
∴当x=34时,w取最大值,最大值为:256元,
即:当w取最大值,销售单价为34元;
②当时,,
解得:,,
∵超市本着“尽量让顾客享受实惠”的销售原则,
∴,
即(元)时的销售单价为30元.
【点睛】本题主要考查的是一次函数及二次函数得应用,掌握函数及图象的性质,能够整合题中条件是解题的关键.
23. 已知是的角平分线,点E,F分别在边,上,,,与的面积之和为S.
(1)填空:当,,时,
①如图1,若,,则_____________,_____________;
②如图2,若,,则_____________,_____________;
(2)如图3,当时,探究S与m、n的数量关系,并说明理由:
(3)如图4,当,,,时,请直接写出S的大小.
【答案】(1)①,25;②4;
(2)S=
(3)S=
【解析】
【分析】(1)①先证四边形DECF为正方形,再证△ABC为等腰直角三角形,根据CD平分∠ACB,得出CD⊥AB,且AD=BD=m,然后利用三角函数求出BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5即可;②先证四边形DECF为正方形,利用直角三角形两锐角互余求出∠A=90°-∠B=30°,利用30°直角三角形先证求出DE=,利用三角函数求出AE=ADcos30°=6,DF=DE=,BF=DFtan30°=2,BD=DF÷sin60°=4即可;
(2)过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,先证四边形DGCH为正方形,再证△DFG≌△DEH(ASA)与△DBG≌△DIH(SAS),然后证明∠IDA=180°-∠A-∠DIH=90°即可;
(3)过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,先证明△DQF≌△DPE,△DBQ≌△DRP,再证△DBF≌△DRE,求出∠ADR=∠ADE+∠BDF=180°-∠FDE=60°即可.
【小问1详解】
解:①∵,,,是的角平分线,
∴四边形DECF为矩形,DE=DF,
∴四边形DECF为正方形,
∵,
∴∠A=90°-∠B=45°=∠B,
∴△ABC为等腰直角三角形,
∵CD平分∠ACB,
∴CD⊥AB,且AD=BD=m,
∵,
∴BD=n=,
∴BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5,ED=DF=5,
∴S= ;
故答案为,25;
②∵,,,是的角平分线,
∴四边形DECF为矩形,DE=DF,
∴四边形DECF为正方形,
∵,
∴∠A=90°-∠B=30°,
∴DE=,AE=ADcos30°=6,DF=DE=,
∵∠BDF=90°-∠B=30°,
∴BF=DFtan30°=2,
∴BD=DF÷sin60°=4,
∴BD=n=4,
∴S=,
故答案为:4;;
【小问2详解】
解:过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,
∴∠DHC=∠DGC=∠GCH=90°,
∴四边形DGCH为矩形,
∵是的角平分线,DH⊥AC,DG⊥BC,
∴DG=DH,
∴四边形DGCH为正方形,
∴∠GDH=90°,
∵,
∴∠FDG+∠GDE=∠GDE+∠EDH=90°,
∴∠FDG=∠EDH,
在△DFG和△DEH中,
,
∴△DFG≌△DEH(ASA)
∴FG=EH,
在△DBG和△DIH中,
,
∴△DBG≌△DIH(SAS),
∴∠B=∠DIH,DB=DI=n,
∵∠DIH+∠A=∠B+∠A=90°,
∴∠IDA=180°-∠A-∠DIH=90°,
∴S△ADI=,
∴S=;
【小问3详解】
过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,
∵是的角平分线,DP⊥AC,DQ⊥BC,
∴DP=DQ,
∵∠ACB=60°
∴∠QDP=120°,
∵,
∴∠FDQ+∠FDP=∠FDP+∠EDP=120°,
∴∠FDQ=∠EDP,
在△DFQ和△DEP中,
,
∴△DFQ≌△DEP(ASA)
∴DF=DE,∠QDF=∠PDE,
在△DBQ和△DRP中,
,
∴△DBQ≌△DRP(SAS),
∴∠BDQ=∠RDP,DB=DR,
∴∠BDF=∠BDQ+∠FDQ=∠RDP+∠EDP=∠RDE,
∵DB=DE,DB=DR,
∴△DBF≌△DRE,
∴∠ADR=∠ADE+∠BDF=180°-∠FDE=60°,
∴S=S△ADR=.
【点睛】本题考查等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形,掌握等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形是解题关键.
24. 如图,在平面直角坐标系中,已知抛物线的顶点为A,与y轴交于点C,线段轴,交该抛物线于另一点B.
(1)求点B的坐标及直线的解析式:
(2)当二次函数的自变量x满足时,此函数的最大值为p,最小值为q,且.求m的值:
(3)平移抛物线,使其顶点始终在直线上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
【答案】(1)B(2,-3),直线AC为:y=-x-3;
(2)m=或m=;
(3)n=或1<n≤4;
【解析】
【分析】(1)求得抛物线与y轴交点C,再由对称轴x=1求得点B坐标,由点A、C坐标待定系数法求直线AC解析式即可;
(2)利用二次函数的对称性分情况讨论:①当m+2≤1时,x=m时取最大值,x=m+2时取最小值,②当m+2>1且m<1,1-m>m+2-1时,x=m时取最大值,x=1时取最小值,③当m+2>1且m<1,1-m<m+2-1时,x=m+2时取最大值,x=1时取最小值,④当m≥1时,x=m+2时取最大值,x=m时取最小值;根据列方程求解即可;
(3)过点A作直线AE⊥BC于E,作直线AF⊥y轴于F,根据坐标特征求得AECF是正方形,于是点A沿直线AC平移时,横纵坐标平移距离相等;结合图形可得设抛物线向左平移到与直线AB只有1个交点时与射线BA也只有一个交点,由平移后的抛物线与直线BA联立求值即可;当抛物线由点A向右平移至左半部分过点B时,与射线BA也只有一个交点,将B点坐标代入平移后的抛物线计算求值即可;
【小问1详解】
解:,
∴顶点坐标A(1,-4),对称轴x=1,
当x=0时y=-3,即C(0,-3),
点B、C关于对称轴x=1对称,则B(2,-3),
设直线AC:y=kx+b,由A(1,-4),C(0,-3),可得
,解得:
∴直线AC为:y=-x-3;
【小问2详解】
解:①当m+2≤1时,即m≤-1时,
x=m时取最大值,x=m+2时取最小值,
∴,
解得:,不符合题意;
②当m+2>1且m<1,1-m>m+2-1时,即-1<m<0时,
x=m时取最大值,x=1时取最小值,
∴,
解得:m=,或m=(舍去),
③当m+2>1且m<1,1-m<m+2-1时,即0<m<1时,
x=m+2时取最大值,x=1时取最小值,
∴,
解得:m=,m=(舍去),
④当m≥1时,
x=m+2时取最大值,x=m时取最小值,
∴,
解得:,不符合题意;
m=0时,二次函数在0≤x≤2上最大值-3,最小值-4,-3-(-4)=1不符合题意;
综上所述:m=或m=;
【小问3详解】
解:由题意作图如下,过点A作直线AE⊥BC于E,作直线AF⊥y轴于F,
由A(1,-4)、B(2,-3)可得
直线AB解析式为:y=x-5,
∵C(0,-3),
∴F(0,-4),E(1,-3),
∵AF=1,AE=1,CF=1,CE=1,∠AEC=90°,
∴四边形AECF是正方形,
∴∠CAE=∠CAF=45°,
根据对顶角相等,可得当点A沿直线AC平移m长度时,横坐标平移m•cos45°,纵坐标平移m•cos45°,
即点A沿直线AC平移时,横纵坐标平移距离相等,
设抛物线向左平移m单位后,与直线AB只有1个交点,则
令△=0,解得:m=,
∴n=1-=,
由图象可得当抛物线由点A向右平移至左半部分过点B时,与射线BA只有一个交点,
设抛物线向右平移m单位后,左半部分过点B,则
B(2,-3)在抛物线上,
,
解得:m=0(舍去)或m=3,
∴1<n≤4,
综上所述n=或1<n≤4;
【点睛】本题考查了一次函数和二次函数的综合,根据二次函数的对称性求最值,二次函数的平移,三角函数等知识;数形结合,熟练掌握二次函数的图象和性质是解题关键.
2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(解析版): 这是一份2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(解析版),共30页。试卷主要包含了这组数据的中位数和众数分别是等内容,欢迎下载使用。
2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析): 这是一份2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析),共31页。试卷主要包含了这组数据的中位数和众数分别是等内容,欢迎下载使用。
2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析): 这是一份2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析),共31页。试卷主要包含了这组数据的中位数和众数分别是等内容,欢迎下载使用。