中考数学一轮复习考点复习专题10 二次函数【考点巩固】(含解析)
展开
这是一份中考数学一轮复习考点复习专题10 二次函数【考点巩固】(含解析),共18页。试卷主要包含了在该二次函数,的图象的对称轴为直线等内容,欢迎下载使用。
专题10 二次函数 考点1:二次函数的图象和性质1.(2020•株洲)二次函数y=ax2+bx+c,若ab<0,a﹣b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A.y1=﹣y2 B.y1>y2 C.y1<y2 D.y1、y2的大小无法确定【分析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.【解析】∵a﹣b2>0,b2≥0,∴a>0.又∵ab<0,∴b<0,∵x1<x2,x1+x2=0,∴x2=﹣x1,x1<0.∵点A(x1,y1),B(x2,y2)在该二次函数y=ax2+bx+c的图象上,∴,.∴y1﹣y2=2bx1>0.∴y1>y2.故选:B.2.(2021·广东深圳市·中考真题)二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是( )A. B. C. D.【答案】A【分析】先分析二次函数的图像的开口方向即对称轴位置,而一次函数的图像恒过定点,即可得出正确选项.【详解】二次函数的对称轴为,一次函数的图像恒过定点,所以一次函数的图像与二次函数的对称轴的交点为,只有A选项符合题意.故选A.3.(2021·山东泰安市·中考真题)如图是抛物线的部分图象,图象过点,对称轴为直线,有下列四个结论:①;②;③y的最大值为3;④方程有实数根.其中正确的为________(将所有正确结论的序号都填入).【答案】②④【分析】根据二次函数的图象与性质对各项进行判断即可.【详解】解:∵抛物线的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,∵抛物线的对称轴为直线x=1,∴﹣=1,即b=﹣2a>0∴abc<0,故①错误;∵抛物线与x轴的一个交点坐标为(3,0),∴根据对称性,与x轴的另一个交点坐标为(﹣1,0),∴a﹣b+c=0,故②正确;根据图象,y是有最大值,但不一定是3,故③错误;由得,根据图象,抛物线与直线y=﹣1有交点,∴有实数根,故④正确,综上,正确的为②④,故答案为:②④.4.(2021·北京中考真题)在平面直角坐标系中,点和点在抛物线上.(1)若,求该抛物线的对称轴;(2)已知点在该抛物线上.若,比较的大小,并说明理由.【答案】(1);(2),理由见解析【分析】(1)由题意易得点和点,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可;(2)由题意可分当时和当时,然后根据二次函数的性质进行分类求解即可.【详解】解:(1)当时,则有点和点,代入二次函数得:,解得:,∴抛物线解析式为,∴抛物线的对称轴为;(2)由题意得:抛物线始终过定点,则由可得:①当时,由抛物线始终过定点可得此时的抛物线开口向下,即,与矛盾;②当时,∵抛物线始终过定点,∴此时抛物线的对称轴的范围为,∵点在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为,∵,开口向上,∴由抛物线的性质可知离对称轴越近越小,∴. 考点2:二次函数的平移5.(2021·江苏中考真题)已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )A.或2 B. C.2 D.【答案】B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,∵得到的抛物线正好经过坐标原点∴+1即解得:或∵抛物线的对称轴在轴右侧∴>0∴<0∴故选:B.6.(2021·山西中考真题)抛物线的函数表达式为,若将轴向上平移2个单位长度,将轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A. B.C. D.【答案】C【分析】将题意中的平移方式转换成函数图像的平移,再求解析式即可.【详解】解:若将轴向上平移2个单位长度,相当于将函数图像向下平移2个单位长度,将轴向左平移3个单位长度,相当于将函数图像向右平移3个单位长度,则平移以后的函数解析式为:化简得:,故选:C.考点3:二次函数与方程、不等式的关系7.(2021·天津中考真题)已知抛物线(是常数,)经过点,当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③.其中,正确结论的个数是( )A.0 B.1 C.2 D.3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线(是常数,)经过点,当时,与其对应的函数值.∴c=1>0,a-b+c= -1,4a-2b+c>1,∴a-b= -2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,∵,∴△==>0,∴有两个不等的实数根;∵b=a+2,a>2,c=1,∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,故选D.8.(2021·江苏中考真题)已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是( )A.1 B.2 C.3 D.4【答案】A【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.【详解】解:∵抛物线的开口向上,∴a>0,故①正确;∵抛物线与x轴没有交点∴<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3)∴8a+2b=2∴4a+b=1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点∴<0可化为,根据图象,解得:1<x<3故④错误.故选A.考点4:求二次函数的解析式9.(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.【答案】(1);(2)【分析】(1)把二次函数化为一般式,再利用对称轴:,列方程解方程即可得到答案;(2)由(1)得:二次函数的解析式为:,再结合平移后抛物线过原点,则 从而可得平移方式及平移后的解析式.【详解】解:(1).∵图象的对称轴为直线,∴,∴.(2)∵,∴二次函数的表达式为,∴抛物线向下平移3个单位后经过原点,∴平移后图象所对应的二次函数的表达式为.考点5:二次函数的最值10.(2021·山东中考真题)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是______.【答案】①②③.【分析】利用二次函数的性质根据特征数,以及的取值,逐一代入函数关系式,然判断后即可确定正确的答案.【详解】解:当时,把代入,可得特征数为∴,,,∴函数解析式为,函数图象的对称轴是轴,故①正确;当时,把代入,可得特征数为∴,,,∴函数解析式为,当时,,函数图象过原点,故②正确;函数 当时,函数图像开口向上,有最小值,故③正确;当时,函数图像开口向下,对称轴为:∴时,可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其增减性,故④错误;综上所述,正确的是①②③,故答案是:①②③.11.(2021·浙江中考真题)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=_____.【答案】【分析】根据函数图像分别求出两个函数解析式,表示出,,,,结合h1=2h2,即可求解.【详解】解:由题意得,图1中的函数图像解析式为:h=v1t4.9t2,令h=0,或(舍去),,图2中的函数解析式为:h=v2t4.9t2, 或(舍去),,∵h1=2h2,∴=2,即:=或=-(舍去),∴t1:t2=:=,故答案是:.12.(2021·内蒙古中考真题)已知抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点在抛物线上,E是该抛物线对称轴上一动点.当的值最小时,的面积为__________.【答案】4【分析】根据题意画出函数图像,要使的值最小,需运用对称相关知识求出点E的坐标,然后求的面积即可.【详解】解:根据题意可求出,抛物线的对称轴为:,根据函数对称关系,点B关于的对称点为点A,连接AD与交于点E,此时的值最小,过D点作x轴垂线,垂足为F,设抛物线对称轴与x轴交点为G,∵,∴,∴,∴,过点C作的垂线,垂足为H,所以四边形ACHE的面积等于与梯形ACHG的面积和,即,则S四边形ACHE-,故答案为:4.13.(2021·江苏南京市·中考真题)已知二次函数的图像经过两点.(1)求b的值.(2)当时,该函数的图像的顶点的纵坐标的最小值是________.(3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.【答案】(1);(2)1;(3)或.【分析】(1)将点代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;(3)分和两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.【详解】解:(1)将点代入得:,两式相减得:,解得;(2)由题意得:,由(1)得:,则此函数的顶点的纵坐标为,将点代入得:,解得,则,下面证明对于任意的两个正数,都有,,(当且仅当时,等号成立),当时,,则(当且仅当,即时,等号成立),即,故当时,该函数的图像的顶点的纵坐标的最小值是1;(3)由得:,则二次函数的解析式为,由题意,分以下两种情况:①如图,当时,则当时,;当时,,即,解得;②如图,当时,当时,,当时,,解得,综上,的取值范围为或.考点6:二次函数的应用14.(2021·江苏中考真题)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.【答案】1264【分析】根据题意,总利润=快餐的总利润+快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可.【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份.据题意: ∴∵ ∴当的时候,W取到最大值1264,故最大利润为1264元故答案为:126415.(2021·浙江金华市·中考真题)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,,.问:顶部F是否会碰到水柱?请通过计算说明.【答案】(1);(2)22米;(3)不会【分析】(1)求雕塑高,直接令,代入求解可得;(2)可先求出的距离,再根据对称性求的长;(3)利用,计算出的函数值,再与的长进行比较可得结论.【详解】解:(1)由题意得,A点在图象上.当时,.(2)由题意得,D点在图象上.令,得.解得:(不合题意,舍去).(3)当时,,,∴不会碰到水柱.16.(2021·湖北中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.【答案】(1);(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【分析】(1)分和两种情况,根据“月销售单价每涨价1元,月销售量就减少万件”即可得函数关系式,再根据求出的取值范围;(2)在(1)的基础上,根据“月利润(月销售单价成本价)月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;(3)设该产品的捐款当月的月销售利润为万元,先根据捐款当月的月销售单价、月销售最大利润可得,再根据“月利润(月销售单价成本价)月销售量”建立函数关系式,然后利用二次函数的性质即可得.【详解】解:(1)由题意,当时,,当时,,,,解得,综上,;(2)设该产品的月销售利润为万元,①当时,,由一次函数的性质可知,在内,随的增大而增大,则当时,取得最大值,最大值为;②当时,,由二次函数的性质可知,当时,取得最大值,最大值为90,因为,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元),,设该产品捐款当月的月销售利润为万元,由题意得:,整理得:,,在内,随的增大而增大,则当时,取得最大值,最大值为,因此有,解得.
相关试卷
这是一份中考数学一轮复习考点精讲与巩固练习专题10 二次函数【考点巩固】(2份打包,原卷版+解析版),文件包含中考数学一轮复习考点精讲与巩固练习专题10二次函数考点巩固原卷版doc、中考数学一轮复习考点精讲与巩固练习专题10二次函数考点巩固解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学一轮复习考点复习专题10 二次函数【考点精讲】(含解析),共26页。试卷主要包含了二次函数的一般形式,函数图象和性质等内容,欢迎下载使用。
这是一份中考数学一轮复习考点复习专题09 反比例函数【考点巩固】(含解析),共18页。试卷主要包含了已知点A,为_________等内容,欢迎下载使用。