中考数学一轮复习考点复习专题38 几何最值之胡不归问题【热点专题】(含解析)
展开
问题分析
从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?
看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.
模型展示:
如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小.
,记,
即求BC+kAC的最小值.
构造射线AD使得sin∠DAN=k,CH/AC=k,CH=kAC.
将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.
最值解法:在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.
【例1】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则的最小值等于________.
【解析】已知∠A=60°,且sin60°=,故延长AD,作PH⊥AD延长线于H点,
即可得,∴=PB+PH.
当B、P、H三点共线时,可得PB+PH取到最小值,即BH的长,解直角△ABH即可得BH长.
【例2】(2021·重庆中考真题)在等边中,, ,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.
图1 图2 图3
(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.
①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;
②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:;
(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当最小时,直接写出的面积.
【答案】(1)①;②见解析;(2)
【分析】
(1)①连接AG,根据题意得出△ABC和△GEF均为等边三角形,从而可证明△GBC≌△GAC,进一步求出AD=3,AG=BG=,然后利用勾股定理求解即可;②以点F为圆心,FB的长为半径画弧,与BH的延长线交于点K,连接KF,先证明出△BFK是顶角为120°的等腰三角形,然后推出△FEB≌△FHK,从而得出结论即可;
(2)利用“胡不归”模型构造出含有30°角的直角三角形,构造出,当N、P、J三点共线的时候满足条件,然后利用相似三角形的判定与性质分别计算出PN与DN的长度,即可得出结论.
【详解】
(1)解:①如图所示,连接AG,
由题意可知,△ABC和△GEF均为等边三角形,
∴∠GFB=60°,
∵BD⊥AC,
∴∠FBC=30°,
∴∠FCB=30°,∠ACG=30°,
∵AC=BC,GC=GC,
∴△GBC≌△GAC(SAS),
∴∠GAC=∠GBC=90°,AG=BG,
∵AB=6,
∴AD=3,AG=BG=,
∴在Rt△ADG中,,
∴;
②证明:以点F为圆心,FB的长为半径画弧,与BH的延长线交于点K,连接KF,如图,
∵△ABC和△GEF均为等边三角形,
∴∠ABC=60°,∠EFH=120°,
∴∠BEF+∠BHF=180°,
∵∠BHF+∠KHF=180°,
∴∠BEF=∠KHF,
由辅助线作法可知,FB=FK,则∠K=∠FBE,
∵BD是等边△ABC的高,
∴∠K=∠DBC=∠DBA=30°,
∴∠BFK=120°,
在△FEB与△FHK中,
∴△FEB≌△FHK(AAS),
∴BE=KH,
∴BE+BH=KH+BH=BK,
∵FB=FK,∠BFK=120°,
∴BK=BF,
即:;
(2)如图1所示,以MP为边构造∠PMJ=30°,∠PJM=90°,则PJ=MP,
∴求的最小值,即为求的最小值,
如图2所示,当运动至N、P、J三点共线时,满足最小,
此时,连接EQ,则根据题意可得EQ∥AD,且EQ=AD,
∴∠MEQ=∠A=60°,∠EQF=90°,
∵∠PEF=60°,
∴∠MEP=∠QEF,
由题意,EF=EP,
∴△MEP≌△QEF(SAS),
∴∠EMP=∠EQF=90°,
又∵∠PMJ=30°,
∴∠BMJ=60°,
∴MJ∥AC,
∴∠PMJ=∠DNP=90°,
∵∠BDC=90°,
∴四边形ODNJ为矩形,NJ=OD,
由题,AD=3,BD=,
∵MJ∥AC,
∴△BMO∽△BAD,
∴,
∴OD=BD=,OM=AD=,
设PJ=x,则MJ=x,OJ=x-,
由题意可知,DN=CD=2,
∴,
解得:,
即:PJ=,
∴,
∴.
【例3】已知抛物线过点,两点,与y轴交于点C,.
(1)求抛物线的解析式及顶点D的坐标;
(2)过点A作,垂足为M,求证:四边形ADBM为正方形;
(3)点P为抛物线在直线BC下方图形上的一动点,当面积最大时,求点P的坐标;
(4)若点Q为线段OC上的一动点,问:是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.
【答案】(1)抛物线的表达式为:,顶点;(2)证明见解析;(3)点;(4)存在,的最小值为.
【详解】
(1)函数的表达式为:,
即:,解得:,
故抛物线的表达式为:,
则顶点;
(2),,
∵A(1,0),B(3,0),∴ OB=3,OA=1,
∴AB=2,
∴,
又∵D(2,-1),
∴AD=BD=,
∴AM=MB=AD=BD,
∴四边形ADBM为菱形,
又∵,
菱形ADBM为正方形;
(3)设直线BC的解析式为y=mx+n,
将点B、C的坐标代入得:,
解得:,
所以直线BC的表达式为:y=-x+3,
过点P作y轴的平行线交BC于点N,
设点,则点N,
则,
,故有最大值,此时,
故点;
(4)存在,理由:
如图,过点C作与y轴夹角为的直线CF交x轴于点F,过点A作,垂足为H,交y轴于点Q,
此时,
则最小值,
在Rt△COF中,∠COF=90°,∠FOC=30°,OC=3,tan∠FCO=,
∴OF=,
∴F(-,0),
利用待定系数法可求得直线HC的表达式为:…①,
∵∠COF=90°,∠FOC=30°,
∴∠CFO=90°-30°=60°,
∵∠AHF=90°,
∴∠FAH=90°-60°=30°,
∴OQ=AO•tan∠FAQ=,
∴Q(0,),
利用待定系数法可求得直线AH的表达式为:…②,
联立①②并解得:,
故点,而点,
则,
即的最小值为.
1.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是______.
【答案】B
【详解】
如图,作DH⊥AB于H,CM⊥AB于M.
∵BE⊥AC,
∴∠AEB=90°,
∵tanA==2,设AE=a,BE=2a,
则有:100=a2+4a2,
∴a2=20,
∴a=2或-2(舍弃),
∴BE=2a=4,
∵AB=AC,BE⊥AC,CM⊥AB,
∴CM=BE=4(等腰三角形两腰上的高相等))
∵∠DBH=∠ABE,∠BHD=∠BEA,
∴,
∴DH=BD,
∴CD+BD=CD+DH,
∴CD+DH≥CM,
∴CD+BD≥4,
∴CD+BD的最小值为4.
故选B.
2.在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为5.
(1)求抛物线和一次函数的解析式;
(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;
(3)若点为轴上任意一点,在(2)的结论下,求的最小值.
【答案】(1);;(2)的面积最大值是,此时点坐标为;(3)的最小值是3.
【详解】
解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,
∵,∴点的坐标为,
代入抛物线的解析式得,,∴,
∴抛物线的解析式为,即.
令,解得,,∴,
∴,
∵的面积为5,∴,∴,
代入抛物线解析式得,,解得,,∴,
设直线的解析式为,
∴,解得:,
∴直线的解析式为.
(2)过点作轴交于,如图,设,则,
∴,
∴,,
∴当时,的面积有最大值,最大值是,此时点坐标为.
(3)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,
∵,,
∴,,∴,
∵,
∴,∴,
∵、关于轴对称,∴,
∴,此时最小,
∵,,
∴,
∴.
∴的最小值是3.
3.已知抛物线(为常数,)经过点,点是轴正半轴上的动点.
(Ⅰ)当时,求抛物线的顶点坐标;
(Ⅱ)点在抛物线上,当,时,求的值;
(Ⅲ)点在抛物线上,当的最小值为时,求的值.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【详解】
解:(Ⅰ)∵抛物线经过点,
∴.即.
当时,,
∴抛物线的顶点坐标为.
(Ⅱ)由(Ⅰ)知,抛物线的解析式为.
∵点在抛物线上,
∴.
由,得,,
∴点在第四象限,且在抛物线对称轴的右侧.
如图,过点作轴,垂足为,则点.
∴,.得.
∴在中,.
∴.
由已知,,
∴.
∴.
(Ⅲ)∵点在抛物线上,
∴.
可知点在第四象限,且在直线的右侧.
考虑到,可取点,
如图,过点作直线的垂线,垂足为,与轴相交于点,
有,得,
则此时点满足题意.
过点作轴于点,则点.
在中,可知.
∴,.
∵点,
∴.解得.
∵,
∴.
∴.
4.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-x+b与抛物线的另一交点为D.
(1)若点D的横坐标为﹣5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
【答案】(1);(2)或;(3)当点F坐标为(﹣2,)时,点M在整个运动过程中用时最少.
【解析】(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).
∵直线经过点B(4,0),∴×4+b=0,解得b= ,
∴直线BD解析式为:.
当x=﹣5时,y= ,∴D(﹣5,).
∵点D(﹣5,)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)= ,
∴.∴抛物线的函数表达式为:(x+2)(x﹣4).即.
(2)由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.
因为点P在第一象限内的抛物线上,所以∠ABP为钝角.
因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.
①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.
设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,
∴.∴P(x,x+k),代入抛物线解析式y= (x+2)(x﹣4),
得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),
∴P(8,5k).∵△ABC∽△APB,
∴,即,解得:.
②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.
设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.
tan∠ABC=tan∠PAB,即:,
∴.∴P(x,x+),代入抛物线解析式y=(x+2)(x﹣4),
得(x+2)(x﹣4)=x+,整理得:x2﹣4x﹣12=0,
解得:x=6或x=﹣2(与点A重合,舍去),∴P(6,2k).
∵△ABC∽△PAB,
,∴,解得,
∵k>0,∴,综上所述,或.
(3)作DK∥AB,AH⊥DK,AH交直线BD于点F,
∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,
点M在整个运动中用时为:,∵lBD:,
∴FX=AX=﹣2,∴F(﹣2,)
中考数学二轮复习专题37费马点问题几何最值之胡不归问题含解析答案: 这是一份中考数学二轮复习专题37费马点问题几何最值之胡不归问题含解析答案,共39页。试卷主要包含了已知等内容,欢迎下载使用。
中考数学二轮专题复习——最值系列之胡不归问题: 这是一份中考数学二轮专题复习——最值系列之胡不归问题,共10页。
中考数学一轮复习考点复习专题40 几何最值之隐形圆问题【热点专题】(含解析): 这是一份中考数学一轮复习考点复习专题40 几何最值之隐形圆问题【热点专题】(含解析),共16页。