中考数学一轮复习考点复习专题45 图形变换与坐标变化【考点精讲】(含解析)
展开
这是一份中考数学一轮复习考点复习专题45 图形变换与坐标变化【考点精讲】(含解析),共16页。试卷主要包含了 中心对称、中心对称图形,5个单位D.将C向左平移3等内容,欢迎下载使用。
考点1:图形的轴对称与中心对称轴对称、轴对称图形(1)轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称.两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.(2)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线称为对称轴.对称轴一定为直线.(3)轴对称图形变换的特征:不改变图形的形状和大小,只改变图形的位置.新旧图形具有对称性. 2. 中心对称、中心对称图形(1)中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么这两个图形成中心对称,该点叫做对称中心. (2)中心对称图形:一个图形绕着某一点旋转180°后能与自身重合,这个图形叫做中心对称图形,该点叫做对称中心. 【例1】(2021·湖南衡阳市·中考真题)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.【答案】D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【例2】(2021·湖北宜昌市·中考真题)下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A. B. C. D.【答案】C【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C. (1)轴对称图形的定义:一个平面图形沿一条直线折叠,直线两旁的部分能够相互重合,则这个图形是轴对称图形;(2)中心对称图形的定义:一个平面图形绕某个点旋转180°后能够与原图形完全重合,则这个图形是中心对称图形. 1.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.2.(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A. B. C. D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.3.下面的图形中,既是轴对称图形又是中心对称图形的是 ( ) 【解答】A.不是轴对称图形,是中心对称图形,故A选项不符合题意;B.不是轴对称图形,是中心对称图形,故B选项不符合题意;C.既是轴对称图形,也是中心对称图形,故C选项符合题意;D.是轴对称图形,不是中心对称图形,故D选项不符合题意.故选C. 考点2:图形的平移(1)定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运动称为平移. (2)特征:①平移后,对应线段相等且平行,对应点所连的线段平行且相等. ②平移后,对应角相等且对应角的两边分别平行,方向相同. ③平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等. 【例3】(2021·浙江绍兴市·中考真题)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到15个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【答案】B【分析】根据平移和大菱形的位置得出菱形的个数进行判定即可【详解】解:用2个相同的菱形放置,最多能得到3个菱形,用3个相同的菱形放置,最多能得到8个菱形, 用4个相同的菱形放置,最多能得到15个菱形, 用5个相同的菱形放置,最多能得到22个菱形, 用6个相同的菱形放置,最多能得到29个菱形, 故选:B., (1)掌握平移的基本概念及平移规律;(2)图形的平移只是位置的变化,图形大小与形状不变. 1.(2021·浙江丽水市·中考真题)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是 (−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是( )A.将B向左平移4.5个单位 B.将C向左平移4个单位C.将D向左平移5.5个单位 D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A (−1,b) 关于y轴对称点为B (1,b),C (2,b)关于y轴对称点为(-2,b),需要将点D (3.5,b) 向左平移3.5+2=5.5个单位,故选:C.2.(2021·山东临沂市·中考真题)在平面直角坐标系中,的对称中心是坐标原点,顶点、的坐标分别是、,将沿轴向右平移3个单位长度,则顶点的对应点的坐标是___.【答案】(4,-1)【分析】根据平行四边形的性质得到点C坐标,再根据平移的性质得到C1坐标.【详解】解:在平行四边形ABCD中,∵对称中心是坐标原点,A(-1,1),B(2,1),∴C(1,-1),将平行四边形ABCD沿x轴向右平移3个单位长度,∴C1(4,-1),故答案为:(4,-1). 考点3:图形的旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.(2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;注意每对对应点与旋转中心的连线所成的角度都是旋转角,旋转角都相等;对应点到旋转中心的距离相等. 【例4】(2021·辽宁大连·中考真题)如图,在中,,,将绕点C顺时针旋转90°得到,点B的对应点在边上(不与点A,C重合),则的度数为( )A. B. C. D.【答案】C【分析】由旋转的性质可得,,进而可得,然后问题可求解.【解析】解:由旋转的性质可得:,,∴等腰直角三角形,∴,∴;故选C.【例5】(2021·四川广安市·中考真题)如图,将绕点逆时针旋转得到,若且于点,则的度数为( )A. B. C. D.【答案】C【分析】由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.【详解】解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C. 旋转的性质:(1)旋转前后两图形全等;(2)对应点到旋转中心的距离相等;(3)对应点与旋转中心所连线段的夹角等于旋转角. 1.(2021·黑龙江大庆·中考真题)如图,是线段上除端点外的一点,将绕正方形的顶点顺时针旋转,得到.连接交于点.下列结论正确的是( ) A. B. C. D.【答案】D【分析】根据旋转的性质可以得到△EAF是等腰直角三角形,然后根据相似三角形的判定和性质,以及平行线分线段成比例定理即可作出判断.【解析】解:根据旋转的性质知:∠EAF=90°,故A选项错误;根据旋转的性质知:∠EAF=90°,EA=AF,则△EAF是等腰直角三角形,∴EF=AE,即AE:EF=1:,故B选项错误;若C选项正确,则,即,∵∠AEF=∠HEA=45°,∴△EAF△EHA,∴∠EAH∠EFA,而∠EFA=45°,∠EAH45°,∴∠EAH∠EFA,∴假设不成立,故C选项错误;∵四边形ABCD是正方形,∴CD∥AB,即BH∥CF,AD=BC,∴EB:BC=EH:HF,即EB:AD=EH:HF,故D选项正确;故选:D2.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,轴,垂足为,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线上,以此进行下去……若点的坐标为,则点的纵坐标为______.【答案】【分析】计算出△AOB的各边,根据旋转的性质,求出OB1,B1B3,...,得出规律,求出OB21,再根据一次函数图像上的点求出点B21的纵坐标即可.【详解】解:∵AB⊥y轴,点B(0,3),∴OB=3,则点A的纵坐标为3,代入,得:,得:x=-4,即A(-4,3),∴OB=3,AB=4,OA==5,由旋转可知:OB=O1B1=O2B1=O2B2=…=3,OA=O1A=O2A1=…=5,AB=AB1=A1B1=A2B2=…=4,∴OB1=OA+AB1=4+5=9,B1B3=3+4+5=12,∴OB21=OB1+B1B21=9+(21-1)÷2×12=129,设B21(a,),则OB21=,解得:或(舍),则,即点B21的纵坐标为,故答案为:. 考点4:图形变换与坐标变化 【例6】(2020•广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为( )A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.【例7】(2021·湖南怀化市·中考真题)如图,在平面直角坐标系中,已知,,,将先向右平移3个单位长度得到,再绕顺时针方向旋转得到,则的坐标是____________.【答案】(2,2).【分析】直接利用平移的性质和旋转的性质得出对应点位置,然后作图,进而得出答案.【详解】解:如图示:,为所求,根据图像可知,的坐标是(2,2),故答案是:(2,2). 1.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是( )A.(0,4) B.(2,﹣2) C.(3,﹣2) D.(﹣1,4)【分析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.2.(2020•泰安)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为 .【分析】延长A'B'后得出点M,进而利用图中坐标解答即可.【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).3.(2021·黑龙江牡丹江·中考真题)如图,△AOB中,OA=4,OB=6,AB=2,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是( )A.(4,2)或(﹣4,2) B.(2,﹣4)或(﹣2,4)C.(﹣2,2)或(2,﹣2) D.(2,﹣2)或(﹣2,2)【答案】C【分析】先求出点A的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A′的坐标.【解析】过点A作于点C.在Rt△AOC中, .在Rt△ABC中, .∴ .∵OA=4,OB=6,AB=2,∴.∴.∴点A的坐标是.根据题意画出图形旋转后的位置,如图,∴将△AOB绕原点O顺时针旋转90°时,点A的对应点A′的坐标为;将△AOB绕原点O逆时针旋转90°时,点A的对应点A′′的坐标为.故选:C.
相关试卷
这是一份中考数学一轮复习考点复习专题11 规律探究之直角坐标系【考点精讲】(含解析),共18页。
这是一份中考数学一轮复习考点复习专题07 平面直角坐标系与函数概念【考点精讲】(含解析),共12页。试卷主要包含了平面直角坐标系,点的坐标特征等内容,欢迎下载使用。
这是一份中考数学一轮复习考点巩固练习专题45 图形变换与坐标变化(教师版),共14页。